首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文中对增程式电动汽车进行了能量管理策略研究。在循环工况已知的前提下,分别研究动态规划控制策略和瞬时等效燃油消耗最小策略,得到两者的行驶成本并与采用基于规则的恒温器式管理策略时的行驶成本进行比较。结果表明,动态规划控制策略和瞬时等效燃油消耗最小策略的行驶成本都比采用基于规则的策略时低。虽然动态规划策略行驶成本比瞬时等效燃油消耗最小策略更低,但因实际行驶过程中工况会有变化,很难达到最优。而ECMS控制策略可实现在线应用,兼顾了燃油经济性和实用性,比较适合作为一种可行的增程式电动客车的能量管理策略。  相似文献   

2.
基于Matlab/Simulink搭建了增程式电动环卫车正向仿真模型,在我国典型城市公交工况下,对增程器的开关模式、持续运行模式、恒定功率输出模式和功率随动输出模式等4种能量管理策略进行100 km的连续仿真,结果表明,增程器开关模式和持续运行模式均可使电池组SOC维持在合理的区间,但恒定功率输出模式比功率随动输出模式的等效百公里油耗小,最小为29.13 L;设置较小的增程器输出功率能够使电池SOC变化平稳,避免电池组的频繁充、放电现象。  相似文献   

3.
以某氢燃料电池混合动力客车为研究对象,应用AVL-Cruise和Matlab-Simulink软件搭建整车联合仿真平台;基于选定的城市客车工况需求,采用便于实时管理的模糊逻辑控制策略,并进行仿真分析。结果表明,本文提出的控制策略可以较好地对燃料电池和动力电池进行能量分配管理。  相似文献   

4.
基于Cruise和Matlab的增程式电动车联合仿真分析   总被引:1,自引:0,他引:1  
在对纯电动客车进行Cruise和Matlab联合仿真的基础上,提出基于电池SOC精确管理的增程式电动客车的仿真模型及分析。  相似文献   

5.
文章对增程式混合动力汽车的工作模式进行了分析,并根据其运行模式,利用AMESIM软件搭建了增程式混合动力汽车的仿真模型。以在整个NEDC循环工况运行范围内电池的SOC基本不变的前提下尽量减少燃油消耗量为目标,对控制策略进行了仿真研究。研究结果表明,在较低速段采用纯电驱动,在较高速段进行充电,并将发动机工作点控制在其最佳油耗点附近,能够有效的改善整车的燃油经济性。  相似文献   

6.
本文中针对增程式电动车提出一种基于能量预测的分时混动能量管理策略。首先,根据静态导航历史数据,利用决策树算法的原理分别设计了基于移动平均和基于突发事件的两种能量预测算法;接着,对两种预测算法分别进行测试,分析其特点;最后,根据模拟的历史数据和未来数据,预测能量使用情况,分析预测精度,并比较分时混动能量管理策略在两种预测算法下的能量分配情况。结果表明:无论对于循环初期SOC的渐增,中期的突变,还是末期的波动,基于移动平均预测都优于基于突发事件的预测。  相似文献   

7.
建立增程式电动汽车整车仿真模型,以恒温器控制策略为例,以车辆最长续驶里程和百公里油耗为优化目标,利用自适应遗传算法对其能量管理策略进行了优化.优化结果表明,采用自适应遗传算法可使等效燃油消耗较之优化前减少10%.同时研究了蓄电池SOC上、下限值与目标续驶里程的关系以及不同蓄电池初始SOC值对燃料电池输出功率最优值的影响.研究发现,目标续驶里程与蓄电池SOC上限值关系不大,受下限值影响较大;燃料电池恒定输出功率最优值随着蓄电池初始SOC值的增大而减小.  相似文献   

8.
设计了一种具有实时控制能力的增程式电动汽车混合型能量管理策略。首先建立了面向能量管理策略优化的增程式电动汽车整车模型。根据能量管理策略特点,将优化目标设置为增程器系统燃油消耗及动力电池当前SOC值与目标值之间差值的总和。再采用动态规划算法求解增程式电动汽车在给定行驶工况下的能量管理优化问题,从而获得了增程器开启时刻与输出功率优化结果。但由于动态规划算法需要已知详细的工况信息,很难应用于实车实时控制,而且从动态规划优化结果中不易提取控制规则,因此利用BP神经网络算法对优化结果进行离线训练,建立了增程器输出功率与车辆行驶状态参数间的非线性映射关系,得到了具有实时控制能力的神经网络控制模型。在采用BP神经网络训练时,根据车辆各个状态参数在CAN总线中的传输精度,对神经网络输入层、输出层参数的精度进行了修正。仿真结果表明:神经网络模型能够获得类似动态规划的最优控制效果,能够控制动力电池SOC在目标值的3%误差带以内。采用NEDC工况对混合型能量管理策略进行了硬件在环仿真试验,试验结果表明:与实车采用的电能消耗-电能维持型控制策略相比,所提出的混合型能量管理策略使汽车的燃油经济性提高了9.5%。  相似文献   

9.
根据等效燃油消耗理论,提出一种适用于增程式电动汽车能量管理策略,并搭建等效数学模型和进行仿真分析。结果表明,该策略既满足动力性需求又具有良好的经济性,且电池SOC基本保持稳定。  相似文献   

10.
为了提高城市公交客车的燃油经济性,针对城市公交客车行驶工况的特点,提出一种功率平衡型的增程式公交客车动力系统设计方案,并对其动力系统零部件(主驱动电机、增程器、动力电池)进行了选型计算。基于AVL-Cruise仿真平台,采用增程器定点能量管理策略,对设计的动力系统的燃油经济性和动力性进行了仿真分析。仿真结果表明,提出的动力系统能够满足整车动力性能要求,并在4种不同城市工况下的百公里油耗平均水平较传统柴油客车降低了30.1%。  相似文献   

11.
分析了增程式混合动力汽车的开关式能量管理策略,提出了一种兼顾提高发动机效率和减少充放电损失的分段式能量管理策略。为进一步降低油耗,在分段式策略基础上引入自学习算法,自动在线调整分段式控制阈值。建立混合动力汽车仿真模型,对开关式能量管理策略和分段式能量管理策略进行了仿真比较,同时对具有自学习功能的分段式能量管理策略进行了仿真分析。某车型的仿真研究案例表明,与开关式策略相比,分段式能量管理策略能使油耗降低3.2%,自学习策略则在充电周期内路线较为固定的情况下可以自动调节到最优的控制阈值。  相似文献   

12.
针对模糊能量管理策略设计仅依赖专家经验很难适应复杂工况的问题,本研究提出了一种基于神经网络工况识别的增程式电动汽车模糊能量管理策略。首先,基于中国货车行驶工况(CHTC-HT)数据,利用改进遗传算法优化的BP神经网络构建工况识别模型;其次,根据所识别的工况类型,融合电池SOC及整车需求功率参数,设计了自适应模糊能量管理策略,通过实时获取发动机功率输出实现能量优化分配;最后,通过硬件在环测试验证了所提出的方法。结果表明自适应模糊策略油耗相比规则策略降低9.67%,比模糊策略降低7.84%,有效提高了整车经济性。  相似文献   

13.
以燃料电池和动力电池组成动力源的混合动力客车为研究对象,提出能量分配和SOC反馈的模糊化方法,设计一种基于T-S模糊控制的燃料电池客车能量分配模型,并基于Advisor平台进行仿真对比分析。结果表明,所提出的控制策略能满足整车动力性要求,并具有较好的经济性。  相似文献   

14.
针对电动汽车动力电池过度放电导致其使用寿命缩短的问题,以在纯电动汽车上增加插拔式增程器的方式,提出了增程器补偿动力电池放电的能量管理控制策略模型。在对ADVISOR进行二次开发的基础上,通过仿真验证了能量管理控制策略的合理性,保证了整车的动力性和经济性。以汽车结束行驶时电池电量下降至设定的荷电区间下限值为优化目标对其进行了优化,结果表明增程器的工作时间明显缩短,燃油消耗和废气排放也较大幅度降低。  相似文献   

15.
以锂电池SOC、车速和制动强度为约束条件,提出2种针对燃料电池增程式电动汽车再生制动转矩的分配策略。基于Cruise/Simulink联合仿真平台,对2种制动转矩分配策略进行了对比分析。结果表明,与并联再生制动系统相比,在4种典型工况下串联再生制动系统的锂电池单独驱动续驶里程增加率最大达11.66%,总续驶里程增加率最大达12.08%,制动能量回收率均增加了29%以上。  相似文献   

16.
针对并联式混合动力客车,以实现中国典型城市公交循环工况下整车系统效率最优为目标,对混合动力系统工作区域进行划分,制定出整车能量管理控制策略,并对纯电工作模式切换进入并联工作模式的转矩协调控制过程进行了研究与分析。通过调节各种工作模式下的临界负荷曲线,并在中国典型城市公交工况下进行性能仿真分析,得出油耗最低的最优临界负荷曲线,并将其应用在样车上进行试验,试验油耗为28.9 L/100 km,相对传统的基准车型油耗达到了31.2%的节油率,节油效果明显。  相似文献   

17.
以某串联式结构的增程式电动公交客车为对象,针对电池电量维持阶段采用的单点恒温器控制策略、功率跟随控制策略、模糊逻辑控制策略效果进行分析,得出了增程式电动汽车电量维持阶段适合采用单点恒温器控制策略的结论。同时,提出了基于油电等价因子的等效百公里燃油消耗以用于评价增程式电动汽车的燃油经济性。按城市公交客车每天运行100~200 km计算,该增程式电动公交客车比传统柴油公交客车节油40%~60%。  相似文献   

18.
基于AVL-Cruise和Simulink建立了联合仿真平台,引入了基于规则的功率跟随能量管理控制策略,对车用燃料电池/蓄电池混合动力(FCHEV)进行了初步仿真,在选定的循环工况下的仿真结果表明,该仿真平台能够真实反映燃料电池汽车的工作过程,蓄电池SOC始终保持在合理范围内.  相似文献   

19.
为提高燃料电池客车经济性,本文分别开发一种基于自适应功率跟随的多挡位滞环控制技术和一种自适应功率预测的动力电池SOC高位均衡技术的燃料电池整车电-电混合能量管理控制策略。将该控制策略应用于中通12 m燃料电池旅游客车,其百公里氢耗最低可至5.2 kg,节能效果明显。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号