首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了DLC涂层对配副20CrNiMo和35CrMo摩擦磨损特性的影响,并分析了二者的磨损机理。试验结果表明,DLC表面处理显著提高了这两种材料的摩擦磨损性能。经DLC处理后,20CrNiMo和35CrMo配副的摩擦系数由未处理时的0.090下降到0.068,磨损率分别减少了91%和97%;DLC处理改变了这两种材料的磨损机制,由未处理的点蚀和微点蚀转变为微磨粒磨损。  相似文献   

2.
采用台式试验装置模拟内燃机气门与气门座圈的负荷环境和接触条件,通过试验研究了气门与座圈的磨损机理以及气门与座圈磨损的主要影响因素。试验结果表明,气门与座圈的磨损主要来源于气门关闭时的落座冲击和燃烧压力作用下气门在座圈上的滑动,并且与气门的关闭速度、燃烧负荷、气门相对气门座圈的不对中性及气门和座圈的材料选择等工作状态有关。  相似文献   

3.
利用试验室模拟方法对3组活塞环-缸套配副(CKS环-缸套、CKS环-渗陶缸套、DLC环-渗陶缸套)的摩擦磨损性能进行了试验研究。研究结果表明,缸套经渗陶处理后,磨损减少21%,摩擦系数下降14%。当采用DLC环与渗陶缸套配副时,配副的磨损进一步减小。陶瓷颗粒的高硬度及阻碍摩擦扩散效应是渗陶处理改善缸套耐磨性的主要原因。  相似文献   

4.
研究了DLC涂层对配副20CrNiMo和35CrMo摩擦磨损特性的影响,并分析了二者的磨损机理。试验结果表明,DLC表面处理显著提高了这两种材料的摩擦磨损性能。经DLC处理后,20CrNiMo和35CrMo配副的摩擦系数由未处理时的0.090下降到0.068,磨损率分别减少了91%和97%;DLC处理改变了这两种材料的磨损机制,由未处理的点蚀和微点蚀转变为微磨粒磨损。  相似文献   

5.
故障现象 我公司一辆神龙富康轿车发动机大修后,在走合期内出现了气门间隙越来越小的故障,致使气门关闭不严,导致气缸压力降低,发动机动力严重不足,汽车无法正常行驶。检测排除 经多次检查,调整气门间隙,均不起作用。每次将气门间隙调到标准值,发动机运行几个小时后,气门间隙就会自动变小,甚至完全消失。对气门摇臂、气门挺杆、气门调整螺钉进行检查,发现这些零件都没有磨损。检查发动机的配气相位,也没有发现异常情况。拆下气缸盖,发现气门的下沉量都增大了。而在发动机修理时,气门的下沉量是符合标准的。接着拆下气门,检查气门与气门座圈的配合面,发现气门座圈磨损相当严重,已经将整个气门座圈磨去了一半,而气门则基本没有磨损。可以断定,气门间隙减小是由于气门座圈质量太差引起的。据了解,该车发动机大修时,因原来的气门座圈下沉量超过使用极限而全部进行了更换。但新的气门座圈不符合质量要求,既不耐磨,又不耐高温。发动机工作时,由于燃烧气体的腐蚀作用,再加上高温时气门开闭时的撞击,使气门座圈磨损加剧。气门座圈磨损后,气门因下沉而发生位移,气门间隙就会变小,甚至完全消失。重新更换了一组正厂生产的气门座圈并研磨气门后装复试车,故障排除。此例故障再次提...  相似文献   

6.
缸盖的气门座圈锥面和导管孔精加工是缸盖加工的关键工序。其精加工特点是设计了双层套装主轴,在同一轴线上加工气门座圈锥面和导管孔来保证其精度。气门座圈同精加工有切入法和纵切法。导管孔精加工有枪铰刀和MAPAL镗铰刀加工,本文提出了这几种加工 精度,经济性和加工循环时间等的对比分析和其发展动向  相似文献   

7.
介绍了内燃机气门与气门座摩擦副的磨损形式,并分析了影响气门和气门座磨损的因素。  相似文献   

8.
介绍了内燃机气门-气门座摩擦副副的磨损形式,并分析了影响气门和气门座磨损的因素。  相似文献   

9.
一辆某品牌单缸125摩托车行驶了约4.3万km,出现了难起动故障,勉强起动后车辆加速性能变差,送维修站进行全面检修,发现气缸盖左右缸进、排气门座圈的凡尔线已经坍塌,与之相对应的气门盘工作锥面也磨损塌边.  相似文献   

10.
气门座圈和气门对内燃机的性能、排放和可靠性起着重要作用。这些零件失效会导致内燃机性能恶化。由于压缩天然气(CNG)发动机的燃烧环境干燥,工作温度较高,会对气门座圈和气门的寿命产生不利的影响。Greaves cotton公司开发了1台由柴油机改制的单缸水冷气道喷射CNG发动机。开发中遇到的主要挑战是气门座圈和气门的磨损。为了避免故障,在座圈材料适应性、座面锥角、座面宽度、气门头部刚度、座圈与气门的同轴度和气门落座速度几方面进行了设计改进。通过修改设计成功地解决了气门和气门座圈的磨损问题,并通过发动机台架试验和车辆试验得到了验证。  相似文献   

11.
表面处理对活塞环摩擦磨损性能影响的试验研究   总被引:1,自引:0,他引:1  
活塞环与缸套的摩擦磨损对内燃机动力性、经济性及可靠性有重要影响.本研究通过圆盘式摩擦磨损试验机对活塞环与缸套的摩擦学性能进行试验,考察了未经处理表面、镀铬表面和PVD表面活塞环的摩擦特性,重点分析了摩擦系数、表面摩擦形貌以及磨损量.结果表明:相比未经处理表面,镀铬和PVD处理均能有效减小活塞环配对副摩擦系数,其中PVD...  相似文献   

12.
凸轮-挺柱配副的摩擦磨损特性在很大程度上影响了汽车发动机的使用性能和可靠性。本研究将基体材料为16MnCr5的发动机挺柱分别涂覆W涂层及DLC涂层,研究了涂层对挺柱摩擦磨损性能的影响。结果表明,经W涂层和DLC涂层处理后,16MnCr5挺柱的磨损分别较未做处理时减少了56%和95%,摩擦系数也显著降低。本研究结果对凸轮-挺柱配副的选材及摩擦学性能评价起到重要作用,已在产品开发中得到验证。  相似文献   

13.
波涛 《摩托车》2012,(10):44-45
气门由头部、杆部和锥面组成(如图1所示),是发动机进、排气道中的控制元件。气门的密封锥面的锥角一般做成45°,它与气门座圈45°形成密封副,共同担任气门的密封作用。在进气行程中,发动机依靠进气门的开启,可使新鲜可燃混合气进入汽缸。在排气行程中,则依靠排气门的开启,把燃烧室膨胀做功后的废气排出汽缸。气门的工作条件极其恶劣,气门头部的工作温度异常高。进气门温度在300℃~400℃之间,排气门的温度则更高达770℃~930℃,极易被烧蚀,从而产生泄漏。  相似文献   

14.
薛福连 《汽车运用》2012,(11):44-44
气门损坏气门损坏有以下形式和原因:①气门烧蚀。主要是排气门,由于材质不良或排气温度过高,引起气门锥面烧蚀;或者因气门座变形,引起锥面烧蚀。此外,气门间隙太小,或气门弹簧太软,造成漏气而将气门烧蚀。②气门断头。多数是制造质量所引起。气门断头对柴油发动机来说是很危险的,气门头掉到活塞顶部,会把活塞与汽缸盖顶坏。当气门间隙过小或汽缸内有异物时,将顶坏气门头,甚至使其断头。③气门座圈脱落。  相似文献   

15.
气门座铰刀     
我部广大指战员,发扬了敢想、敢干的革命精神,群策群力,经过反复实践,试制成功气门座铰刀。原来修理研配气门座和气门座圈的工序有:1.要把旧气门座平面刮去,然后镶上座圈;2.更换平面铰刀,将座圈高出部刮去;3.更换铰刀,修刮气门座斜度成30°或75°;4.再换上内口铰刀,修刮约1~2毫米的气门接触线宽度,最后再用多边砂轮打光。工序较  相似文献   

16.
球与孔板是柴油机高压共轨系统中的关键配副,该配副的抗摩擦磨损能力在很大程度上影响了喷油器的可靠性和耐久性。研究了2种材料的球与3种材料的孔板配副的摩擦磨损性能。结果表明,高速钢孔板的耐磨性最佳,国产GCr15与进口100Cr6的耐磨性较为接近;陶瓷球的耐磨性优于GCr15球。高速钢具有优良耐磨性的主要原因是高速钢基体硬度较高,抗磨粒磨损及抗疲劳磨损能力更强。  相似文献   

17.
我厂生产的490Q 型汽油机采用顶置凸轮式配气机构。这种配气机构(图1)与下置凸轮式配气机构的传动关系不同,其摇臂比随着凸轮轴的转角变化而变化,气门升程不能简单地求得。为了提高发动机质量,我们在上海市计算中心的协助下,用X-2型电子计算机对490Q型汽油机现用配气机构作了详细分析,为减弱气门弹簧弹力提供了可靠依据,为改善凸轮摇臂摩擦副早期过度磨损创造了有利条件。  相似文献   

18.
太脱拉T815汽车装备V10风冷发动机,工作温度高,热负荷大,加之铝质气缸盖伸缩量大,导致气门座圈易松动脱落。此外,发动机长时间工作,气门座圈工作面正常工作磨损超限,气门凹陷时,也需要重新镶配气门座圈。在发动机修理作业中,镶配气门座圈是一项重要的工作,若镶配合适,可以减少发动机  相似文献   

19.
气门是发动机中的重要零件,工作中承受交变负荷、高温和化学腐蚀,极易损坏。当发动机长时间使用或长时间超负荷运行而功率下降、经济指标恶化时,更应检查气门锥面密封是否良好。 气门的损坏有锥面磨损而出现沟槽,因烧蚀而出现凹坑、麻点或结炭;因长期使用杆部磨损变细或受力变形弯曲;杆端因磨损而使平面破坏等几种情况。 使用中的气门杆部直径差通常不大于0.01mm,当过  相似文献   

20.
采用环块运动方式对经渗碳处理的20CrNiMoH*,20CrMnTi齿轮材料在润滑条件下的滑动摩擦磨损性能和磨损机理进行了试验研究.试验结果表明,不同材料20CrMnTiH和20CrNiMoH*配副的摩擦因数最低为0.111,20CrNiMoH*同材料配副的摩擦因数为0.117,而20CrMnTiH同材料匹配的摩擦因数最高为0.120.不同材料匹配耐磨性能由高到低的顺序为:20CrNiMoH*与20CrNiMoH*>20CrNiMoH*与20CrMnTiH>20CrMnTiH与22CrMnTiH;润滑滑动摩擦条件下的渗碳齿轮材料滑动磨损机理主要为点蚀磨损和磨粒磨损.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号