首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
一种新型电动汽车复合电源结构及其功率分配策略   总被引:1,自引:0,他引:1  
为提高电动汽车复合电源工作效率和保证电池组安全,提出了一种新型复合电源结构,通过对切换开关和DC-DC的控制,实现UC/Batteries和Batteries/UC两种复合电源结构的功能。在此基础上,设计了新型复合电源的7种工作方案,并根据SD-EV试验样车的锂电池组与电机的工作电压和电机功率需求特性完成系统的参数匹配。考虑DC-DC效率、锂电池组SOC和超级电容SOC等因素,基于功率平衡控制规则提出了不同工作方案的功率分配策略。在Matlab/Simulink中的仿真结果显示,新型复合电源能多方案工作,并有效提高复合电源工作效率和保证锂电池组的充放电安全;而搭建试验台进行验证测试的结果表明,与UC/Batteries和Batteries/UC复合电源相比,新型复合电源的综合效率分别提高了9%和4%。  相似文献   

2.
以锂电池-超级电容构成的复合电源电动汽车为研究对象,在满足动力性能的前提下,为实现超级电容在合理的荷电状态(SOC)下承担高频率信号,且锂电池承担低频率信号的目标,建立了实时小波变换-模糊控制的能量管理控制策略。基于Matlab/Simulink和ADVISOR软件搭建整车模型,并在NEDC循环工况下进行仿真测试。仿真结果表明,与单一锂电池相比,在小波变换-模糊控制策略下,复合电源锂电池的驱动峰值电流降低了20.68%,寿命提高了16.74%。搭建了按一定比例缩小的复合电源系统试验平台,并在NEDC工况下进行试验验证。结果表明,小波变换-模糊控制策略对复合电源电动汽车的能量管理具有良好的控制效果。  相似文献   

3.
再生制动技术可以有效回收车辆制动能量,是提高电动汽车续驶里程的重要途径,超级电容具有高功率密度、高效率的特点,利用蓄电池-超级电容组成的复合电源作为电动汽车的储能装置可以改善电池工作状态,提高电池寿命及可靠性,并提高能量回收率。目前使用复合电源(蓄电池-超级电容)进行再生制动的电动汽车多采用并联形式,针对此类状况,基于无源串联复合电源结构设计其再生制动系统,其主要由电机、超级电容组、整流桥和控制器组成。在控制策略上,采用电压反馈恒定电流制动方式,基于脉冲宽度调制(PWM)控制,在制动过程中根据电动汽车车速与超级电容端电压实时调节PWM的占空比以实现目标制动电流恒定。在MATLAB/Simulink平台上建立再生制动系统仿真模型,验证所提控制策略的有效性,并利用某电动汽车对所设计系统进行滑行、制动等试验。研究结果表明:相比有源并联式复合电源,该系统不需要DC/DC转换器,结构及控制简单,该系统能够较好地实现制动能量回收,所采用的控制策略能够有效地实现恒电流制动,电制动减速度稳定,同时具有较高的能量回收率。  相似文献   

4.
动力电池、超级电容复合电源兼具动力电池和超级电容二者之长,在保证电动汽车良好的动力性和制动性能的同时,避免动力电池承受大电流的冲击和电池频繁充放电,延长电池使用寿命,提高充放电效率。此外,最大限度地回收制动能量,提高整车的经济性。本文对传统的复合电源控制策略进行了归类,并指出了传统控制策略的优缺点,对国内外复合电源的研究及所对应的新型的控制策略做了简述。最后通过分析,提出了今后研究复合电源能量管理控制策略的方向。  相似文献   

5.
分析了复合电源纯电动汽车的电源结构和工作模式,依据纯电动汽车基本性能指标对复合电源进行了能量匹配,制定了能源安全约束,并基于此制定了多目标模糊控制策略。仿真结果表明,所提出的控制策略能够充分发挥超级电容的优势,可提升纯电动汽车续驶里程、合理分配复合电源功率及减小车速误差。  相似文献   

6.
基于Advisor2002在Matlab/Simulink环境下搭建复合电源纯电动汽车仿真模型,分别设计了基于模糊控制和模糊神经网络的复合电源的功率分配策略,分别在CYC-ECE和CYC-UDDS道路循环工况下进行仿真。仿真结果表明,复合电源中蓄电池的放电电流明显减小,SOC变化减缓,增加了汽车的续驶里程,验证了复合电源的优越性;基于模糊神经网络的功率分配策略能更好的实现功率分配,超级电容能更好地发挥主动调节作用。  相似文献   

7.
模糊PID控制的电动汽车再生制动系统变换器的研究   总被引:1,自引:1,他引:0  
提出了利用超级电容作为储能元件实现电动汽车再生制动的能量回收方案,分析了电动汽车控制系统的双向DC/DC变换器和电机驱动器的驱动降压电路、制动升压电路,设计了该控制系统的模糊自整定PID控制器。通过仿真研究表明,在车辆驱动降压变换时,模糊自整定PID控制的超级电容器在150 A左右的大电流放电情况下,超级电容仍能维持2.5 s的指定电压输出,车辆在额定功率下工作,通过降压变换,超级电容储存的能量迅速供给电机,有效提高了驱动电流,改善了起动及加速性能,有效增加了续驶里程。在制动升压变换时,模糊自整定PID控制的超级电容器电流基本跟随指令值上下波动,超级电容电压从120 V不断上升,使得该电容器的储能能力得到充分利用,实现了高水平的能量回收。  相似文献   

8.
为提升高温环境下电源系统的综合效率,通过分析电动汽车热管理和能耗模型,提出一种考虑电池热管理的复合电源电动汽车功率分配控制策略,并在CATC、NEDC工况下分别与单一电源电动汽车和采用常规策略的复合电源电动汽车进行对比仿真。结果表明,相对于单一电源,采用复合电源方案的电动汽车电源系统能量回馈提升3.6%以上,综合能耗降低3.3%以上,电池最终温度下降3.51℃以上;相对于采用常规策略的复合电源电动汽车,考虑电池热管理的复合电源功率分配控制策略提升超级电容参与度,使复合电源系统能量回馈提升1.8%左右,综合能耗降低1.2%左右,电池最终温度降低1.25℃左右,从而验证了该策略的有效性。  相似文献   

9.
针对目前锂电池-超级电容复合能源电动汽车在单一模糊控制策略上的不足,提出并设计了多模糊联合控制的能量管理策略。结合实验台架实际参数,在MATLAB环境下搭建整车模型,通过ECE和UDDS工况对模糊方波调节控制策略、功率分配因子模糊控制策略和改进的基于模糊方波调节的联合控制策略对比分析,最后选择效果最优的基于模糊方波调节的联合控制策略嵌入实验台架进行验证。实验结果表明,本文中提出的控制策略在两种测试工况下均可实现锂电池在不同SOC下充放电电流平滑控制在1C以内,有利于锂电池组安全运行并有效降低整车行驶成本。  相似文献   

10.
设计了一种由燃料电池、超级电容和锂离子电池组成的新型混合动力系统;提出了一种基于小波变换的燃料电池混合动力能量管理策略,实现了按功率需求的变化频率对燃料电池、超级电容和锂离子电池进行能量分配,从而改善了系统的性能,延长了部件寿命;进行了该系统的建模和仿真,结果表明该方法可以很好地实现功率分配,满足设计要求。  相似文献   

11.
利用AVL/Cruise仿真软件建立了复合电源混合动力汽车模型,针对复合电源与单一电池性能的差异,基于模糊控制的思想,在MATLAB/Simulink下设计了整车功率分配策略与电池、超级电容SOC平衡策略,提出了基于车速的超级电容期望SOC平衡方法。通过仿真,验证了控制策略,达到了预期的控制效果。与采用逻辑门限的控制策略相比,电池的使用率降低了85.6%,燃油经济性提升了2%,可在不影响经济性的前提下延长复合电源中的电池寿命。  相似文献   

12.
<正>超级电容和动力锂电池相混合的"双电"新能源公交车,弥补了单电源新能源车辆的劣势,在实现车辆瞬间快速启动的同时,也提高了系统能量回收的稳定性,有效延长了动力锂电池的使用寿命。随着传统能源逐渐枯竭,新能源汽车的发展已经引起了人们高度重视。近些年,上海浦东上南公司一直在新能源公交车领域进行尝试,采用了由上海瑞华集团提供的超级电容和动力锂电池相混合的"双电"技术,弥补了  相似文献   

13.
为了解决纯电动汽车用动力电池功率密度低、大电流充放电能力差和循环使用寿命短等问题,以超级电容与动力电池组成的复合储能系统为研究对象,提出了基于典型循环工况的复合储能系统参数匹配优化方法;在满足各循环工况对复合储能系统能量需求与功率需求的前提下,以动力电池容量和超级电容容量为优化变量,对复合储能系统总成本与总质量进行了多目标优化。在此基础上,根据电机需求功率及超级电容荷电状态,以减小动力电池输出电流为目标,制订了基于滤波思想的基本规则控制策略;为更好地适应不同的循环工况,提出了复合模糊控制策略,其中主模糊控制器基于电机功率需求、动力电池荷电状态和超级电容荷电状态得到动力电池输出功率初次分配系数,子模糊控制器根据电机功率需求和超级电容当前荷电状态与其目标值的差值得到动力电池输出功率修正系数,二者协同作用得到动力电池最佳输出功率,并对整车动力性、经济性、动力电池电流和温度特性进行了仿真分析。结果表明:采用所提出的复合储能系统及2种控制方法与单一动力电池的纯电动汽车相比,百公里加速时间分别缩短了6.89%和9.85%,NYCC工况下总能耗分别降低了14.15%和19.08%,动力电池最大电流分别降低了63.4%和65.17%,动力电池温升分别降低了22.87%和61.53%。  相似文献   

14.
电动汽车复合制动由电机再生制动与机械摩擦制动两部分构成,其控制性能直接影响车辆的能量利用效率、制动安全性以及舒适性。围绕静态制动转矩分配控制、动态复合制动协调控制、制动换挡控制、智能辅助驾驶中的复合制动控制4个方面的研究现状与关键技术展开综述,并对复合制动控制未来研究方向进行了展望。对文献的梳理分析表明:制动转矩分配决定着复合制动系统能量回收能力与车辆制动稳定性,基于规则的分配策略面对复杂多变工况自适应性欠佳,而基于优化的分配策略各方面性能表现良好,但需要兼顾控制实时性与优化效果;利用电机响应迅速与控制精确的优势完成复合制动协调控制,能够提升制动模式切换过渡工况与紧急制动工况的控制性能,改善驾驶舒适性;制动过程中实施合理换挡可以进一步提升能量回收效率,同时通过补偿控制解决换挡过程中动力中断和转矩冲击等问题,保证换挡平顺性;随着电动汽车智能化和网联化发展,复合制动控制与驾驶人辅助系统相结合有助于在保证系统功能的同时实现能量回收效益最大化。  相似文献   

15.
纯电动汽车复合电源系统仿真研究   总被引:1,自引:0,他引:1  
对纯电动汽车的复合电源系统结构和工作原理进行了介绍。基于MATLAB/SIMULINK平台建立了复合电源系统仿真模型,并以简单易行、最大限度保护蓄电池、提高能量回收效率为前提,为复合电源系统设计了功率分配控制策略,以此策略为基础完成了对复合电源系统的整车仿真。仿真结果表明所设计的功率分配控制策略能充分发挥复合电源的特点,在延长蓄电池使用寿命的同时提高了整车动力性。  相似文献   

16.
为了解决目前国内混合动力电动汽车普遍采用的是单一蓄电池供电能量存储系统,蓄电池的寿命不能最大化的利用这一问题,在混合动力结构中加入了超级电容器组,分析了超级电容的原理与特性后,在Matlab/Simulink里建立了蓄电池组与超级电容组成的复合电源系统模型,并确定了复合电源系统的拓扑结构以及各元件的选型以及参数匹配,加入复合电源控制策略,并对Advisor进行了二次开发,对比复合电源供电的车辆与单一蓄电池供电在性能与燃油经济性方面的差异。结果表明复合电源系统供电的混合动力车辆能够减小蓄电池组的大电流充放电,并且能够提高混合动力汽车的动力性和燃油经济性。  相似文献   

17.
The Design of Hybrid Energy Storage System for Hybrid Electric Vehicles   总被引:2,自引:0,他引:2  
针对动力电池在混合动力汽车中频繁大功率充放电的问题,采用了电池和超级电容并用的能量存储系统,利用超级电容高功率特性来改善储能系统的性能.本文研究了电池与超级电容直接并联和主动并联两种混合能量存储系统,后者采用零电流转换软开关直流变换器来连接超级电容和电池.在Matlab Simulink平台建立零电流转换软开关直流变换器的动态模型、超级电容和电池模型,并在AVL Cruise中进行仿真.结果表明:直接并联方案不能充分发挥超级电容的能力;而主动并联方案降低了纯电动工况和制动能量回收工况下电池的峰值电流,电池端电压变化范围缩小,能量效率比单一电池的能量存储系统提高了14.92%.另外,由于采用了模糊PID控制算法,改善了动态响应性能.  相似文献   

18.
以能量回收最大化为目标,提出一种双电机驱动电动汽车再生制动模糊控制策略,通过分析再生制动原理,考虑ECE法规、理想制动力分配曲线、电机、电池功率等约束,利用模糊控制理论确定电机制动所占比例,在保证制动方向稳定的前提下,合理分配前、后轴制动力,协调机电复合制动力。利用MATLAB/Simulink对控制策略进行不同工况下的仿真和硬件在环试验验证,结果表明:所设计的控制策略可实现机电复合制动系统的协调工作,有效延长续驶里程。  相似文献   

19.
胡杰  王明  刘迪  颜伏伍  曹恺 《汽车工程》2021,43(5):675-682
为考虑未来行驶车速和道路坡度对整车需求功率的影响,本文中基于交通信息融合对现有复合电源能量管理策略进行优化.首先采用MATLAB/Simulink搭建复合电源仿真模型,而基于交通拥堵情况和行驶车速类型提出了未来短时间车速变化趋势判定方法;接着结合道路坡度和车速变化趋势,设计了可基于交通信息自动修正超级电容输出功率的模糊...  相似文献   

20.
汽车制动能量再生系统复合储能方式研究   总被引:1,自引:0,他引:1  
对由铅酸电池与超级电容并联,并在铅酸电池与超级电容之间采用两象限DC/DC转换器控制的复合储能方式进行研究,建立其简化的等效电路模型,并从能量流的角度出发建立复合储能系统能量流模型,在Matlab/Simulink环境下对模型进行仿真计算,并在课题组搭建的汽车能量再生系统硬件在环仿真试验台上进行了试验,结果表明复合储能器能量回收率远高于单个储能器回收的能量值,并且复合储能系统的使用有利于制动能量回收与利用的优化管理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号