首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
随着城市化进程的迅速推进以及大都市城市轨道交通网络化运营的逐步实现,城市轨道交通在城市交通系统中扮演的角色越来越重要,一旦城市轨道交通网络中的重要节点发生了紧急事件,必然会严重影响到城市轨道交通的正常运营。本文主要利用复杂网络理论对城市轨道交通网络进行分析,首先介绍了城市轨道交通网络的复杂网络特征,在此基础上提出利用SpaceL方法构建城市轨道交通网络拓扑结构,并且使用TOPSIS方法构建基于城市轨道交通网络特性的节点重要度评估模型,以南京地铁为例,得出南京城市轨道交通站点重要度排序。确定城市轨道交通中的关键节点,可以给城市轨道交通网络可靠性的研究提供很大的帮助,对于城市轨道交通网络的优化有着重要的意义。  相似文献   

2.
为提高城市轨道交通网络脆弱性评估的客观性, 将乘客需求特性集成到网络脆弱性的计算中; 在城市轨道交通网络Space L空间下静态拓扑结构的基础上, 以客流为权重建立了轨道交通加权网络; 基于客流指标提出了车站连接强度和加权节点介数, 用于反映动态网络结构特征, 度量节点间相互作用强度; 针对城市轨道交通网络客流的时空特性, 结合网络客流需求特性, 基于出行消耗最大容限阈值, 构建了站点故障条件下的乘客有效路径子图和网络客流的OD损失率, 进而评估城市轨道交通网络的脆弱性; 以西安城市轨道交通网络为例, 从网络客流视角分析了城市轨道交通网络特征及其脆弱性。研究结果表明: 西安市轨道交通网络具有小世界网络特性, 平均路径长度为10.7, 其中小寨站和北大街站为网络关键节点, 其车站连接强度分别为166 795、149 059, 加权节点介数分别为0.365、0.369, 这两个站点的中断对西安市轨道交通网络效率的影响分别为40.1%、39.4%;乘客出行容限阈值极大地影响着网络中站点的重要性排序, 网络脆弱性随着乘客出行容限阈值的增大而逐渐降低; 脆弱性与介数的相关性强于脆弱性与度和强度的相关性, 随着出行容限阈值的增大, 加权介数与其脆弱性的关联性逐渐降低。可见, 提出的计算指标和方法突出了客流特征与乘客需求对轨道交通网络脆弱性的影响, 能够很好地体现轨道交通网络的功能特性。   相似文献   

3.
针对轨道交通网络中现有的站点重要度评估方法精度低的问题,提出一种基于客流量的城市轨道交通网络站点重要度评估方法,筛选出城市轨道交通网络的重要站点.采用Space L方法构建轨道交通加权网络模型,通过分析客流量比例系数和节点效率对站点的作用,设计站点重要度贡献矩阵,以纽约轨道交通网络为例,采用最大连通子图比例和网络平均效率评价指标分析站点的重要度.研究结果表明:与传统的评估方法相比,引入客流量因素可以显著提高重要站点的评估精度.该方法可为实现站点的高效可靠运行提供技术支持,具有良好的应用前景.  相似文献   

4.
在城市轨道交通网络化运营中,节点重要度的有效评估对优化网络结构、提高网络运营效率具有十分重要的意义。以网络节点为研究对象,改进经典space L模型,考虑运用同异站台换乘构建网络拓扑结构,建立客流均衡分配模型,基于复杂网络理论,提出网络客流加载条件下车站节点重要度的3个评价指标,分析各指标与实际客流的相关性,得到节点重要度的综合测算模型。以北京地铁网络进行实例分析,结果表明客流加载条件下的节点重要度更符合地铁网络的运营实际。  相似文献   

5.
为了更为真实的反映城市轨道交通网络的实际运营情况,在复杂网络理论基础上,进一步考虑客流因素的影响,提高网络中关键站点识别的准确性,通过分析站区间断面客流来源,根据普通站和换乘站的客流运输功能特征,分别构建了客流传播模型,对历史刷卡数据配流统计标定模型参数,并结合复杂网络的度与介数提出了4个关键站点识别指标.以某市轨道交通网络为例,利用刷卡数据对某工作日早高峰时段进行了全网动态客流演示并展示关键车站.研究结果表明:关键线路为1号线与10号线,南站、西二旗、天通苑附近乘客滞留严重,客流负荷强度大的车站更易受到大客流的冲击;本文所构建的客流传播模型可动态显示全网各区间等级及滞留车站的变化,并能综合真实客流、线路运输能力以及线网结构三方面的指标识别关键站点,可更有效地为轨道交通网络安全管理提供参考.  相似文献   

6.
通过对城市轨道交通网络特性研究,提出一种基于网络拓扑特性及运营特性的m阶邻接节点重要度评价方法。量化m阶邻接节点的拓扑属性及交通流量对轨道交通网络站点的重要度贡献,定义m接邻接节点重要度贡献权重。通过实例验证,与以往的研究方法相比较,证明该方法具有较高的可靠性。  相似文献   

7.
城市轨道交通各条线路和车站相互连接,联系紧密,其中的节点故障会在网络迅速传播,造成较大范围的拥堵,影响整个网络的正常运营.本文首先结合轨道交通特性,对城市轨道交通网络的级联失效现象进行分析.采用改进的边权函数来分析节点状态变化,进而产生流量的重分配.接着,建立了城市轨道交通网络级联失效模型,并以网络失效规模和破坏程度两个指标对其进行评估,仿真了级联失效过程并分析了不同失效策略下城市轨道交通网络的级联失效抗毁性.最后,以北京市轨道交通网络为例进行了实证研究.研究结果对轨道交通网络的合理规划、结构优化及运营安全具有重要的参考意义.  相似文献   

8.
基于复杂网络理论的广州轨道交通网络可靠性研究   总被引:1,自引:0,他引:1  
城市轨道交通网络是由轨道线路和车站组成的复杂网络,利用复杂网络理论探讨轨道线网的可靠性对提升其可达性和运营效率有重要意义. 采用space L方法对广州轨道交通网络进行了拓扑建模,计算分析了节点度、聚类系数、平均路径长度等指标及其分布规律,并重点研究了换乘车站故障情况下整个轨道交通网络受影响程度及可靠性. 结果表明,现阶段广州轨道交通网络呈现随机网络的特征,换乘车站发生运营故障将严重影响网络中的较长距离出行,降低轨道交通网络的客流吸引度,广州轨道交通网络在换乘车站故障后其全局效率降低,局部效率不变,车站之间的紧密程度较差.  相似文献   

9.
城市轨道交通网络是由轨道线路和车站组成的复杂网络,利用复杂网络理论探讨轨道线网的可靠性对提升其可达性和运营效率有重要意义. 采用space L方法对广州轨道交通网络进行了拓扑建模,计算分析了节点度、聚类系数、平均路径长度等指标及其分布规律,并重点研究了换乘车站故障情况下整个轨道交通网络受影响程度及可靠性. 结果表明,现阶段广州轨道交通网络呈现随机网络的特征,换乘车站发生运营故障将严重影响网络中的较长距离出行,降低轨道交通网络的客流吸引度,广州轨道交通网络在换乘车站故障后其全局效率降低,局部效率不变,车站之间的紧密程度较差.  相似文献   

10.
基于复杂网络特性理论构建福州规划至2021年的城市轨道交通拓扑网络,通过计算该网络的度分布、平均聚类系数、网络直径等特征指标对该网络的便捷性,连通性及站点的可达性等进行分析,通过PageRank值计算判别该轨道交通网络的重要车站,为福州轨道交通网络后期的规划、建设及运营提供有效的指导依据。  相似文献   

11.
���й����ͨ�������ܷ���   总被引:1,自引:0,他引:1  
随着新线的建设,城市轨道交通网络规模不断扩大,不同时期的网络特征不同,以北京为例分析发展变化规律,可以为轨道交通网络化运营提供建议.根据复杂网络理论,首先对比了北京市轨道交通规划路网和目前运营路网的网络特征值,分析了特征值的变化规律,得出规划路网的平均度、聚集系数、平均最短距离等指标均有所增大,但由于服务半径扩大,网络效率略有下降.然后针对重要节点失效和线路失效,对比了失效后的网络弹性,并确定了网络中的重要节点.结果表明:节点失效和线路失效对规划路网的影响较小,部分车站的重要度随着网络完善而发生改变,对于运营路网,必须保障重要节点的可靠性.  相似文献   

12.
为进一步拓展可控性理论在城市轨道交通客流控制领域的应用,首先根据相邻车站间进出站客流和断面客流的关系,论证城市轨道交通客流网络为线性时不变系统,证明可控性理论在城市轨道交通网络上的适用性.基于严格可控性框架和滞留人数为核心的子网生成策略,得到客流控制车站的识别方法.进一步地,引入机器学习领域的相关评价指标评估该方法的效果.研究结果表明:平峰时段北京市城市轨道交通网络的可控性为0.043,意味着该时段的网络状态较为稳定,无需采取客流控制措施;高峰时段,识别方案在拥堵生成到消散的过程中,更加侧重于对线网中心车站的控制.通过识别方法得到的客流控制方案与实际客流控制方案的吻合度最高可达70%.当两种方案控制车站的数量相同时,识别方法得到的客流控制方案更加侧重于对城市西部和中心区域的站点进行控制.  相似文献   

13.
为进一步拓展可控性理论在城市轨道交通客流控制领域的应用,首先根据相邻车站间进出站客流和断面客流的关系,论证城市轨道交通客流网络为线性时不变系统,证明可控性理论在城市轨道交通网络上的适用性.基于严格可控性框架和滞留人数为核心的子网生成策略,得到客流控制车站的识别方法.进一步地,引入机器学习领域的相关评价指标评估该方法的效果.研究结果表明:平峰时段北京市城市轨道交通网络的可控性为0.043,意味着该时段的网络状态较为稳定,无需采取客流控制措施;高峰时段,识别方案在拥堵生成到消散的过程中,更加侧重于对线网中心车站的控制.通过识别方法得到的客流控制方案与实际客流控制方案的吻合度最高可达70%.当两种方案控制车站的数量相同时,识别方法得到的客流控制方案更加侧重于对城市西部和中心区域的站点进行控制.  相似文献   

14.
针对北京市三环内实际交通网络,分别构建城市道路交通网络和由城市轨道交通网络叠加形成的城市复合交通网络模型.基于复杂网络理论,采用Matlab 计算节点度、聚类系数、平均路径长度、介数和节点紧密度等指标,分析了其分布规律,然后对这两个网络模型的统计特征值进行比较分析.结果表明,它们都具有一定的随机网络模型和无标度网络模型的小聚类系数特征,叠加后的城市交通网络直径和平均最短路径减小,平均度、聚类系数和节点紧密度都有不同程度增加,使整个路网的可达性得到了一定的提高,网络承载力变大.  相似文献   

15.
针对北京市三环内实际交通网络,分别构建城市道路交通网络和由城市轨道交通网络叠加形成的城市复合交通网络模型。基于复杂网络理论,采用Matlab计算节点度、聚类系数、平均路径长度、介数和节点紧密度等指标,分析了其分布规律,然后对这两个网络模型的统计特征值进行比较分析。结果表明,它们都具有一定的随机网络模型和无标度网络模型的小聚类系数特征,叠加后的城市交通网络直径和平均最短路径减小,平均度、聚类系数和节点紧密度都有不同程度增加,使整个路网的可达性得到了一定的提高,网络承载力变大。  相似文献   

16.
城市轨道交通各条线路和车站因其所承载客流量多少不同在网络结构的地位也不同,仅从网络结构来评价可靠性可能会产生误判.本文根据地铁网络智能卡数据构建了网络权重矩阵,结合网络结构确定了无权、有权网络的复杂网络参数,并基于有无权重 两个网络分别定义了4 种相继故障的策略参数及网络可靠性评价模型.以北京市轨道交通为实例系统性分析有无权重两个网络的可靠性,结果表明,模型可操作性强,弥补了城 市轨道交通网络可靠性研究的不足,加载了客流的网络脆性更明显,站点重要性排序也 发生较大变化.  相似文献   

17.
城市轨道交通网络的连通可靠性对乘客的出行和网络的正常运营具有重要意义,为衡量城市轨道交通网络的连通可靠性,提出容忍系数确定车站间的可容忍路径。以车站间的可容忍路径数目衡量车站间的连通可靠性,并据此计算车站和网络的连通可靠性。以成都地铁为例,运用运营数据分析了考虑车站权重和不考虑车站权重时成都地铁网络的连通可靠性。通过计算和分析,确定了连通可靠性最强和最弱的车站并分析了成都地铁在不同时间段、不同容忍系数下的连通可靠性。结果表明,当容忍系数小于1.6时,容忍系数对成都地铁网络的连通可靠性影响很大。  相似文献   

18.
为科学客观地识别大型城市轨道交通网络瓶颈,提高网络化运营和服务管理水平,本文从轨道交通网络层出发综合考虑车站与区间能力关系,研究系统内部断面客流量和车站实际客流集散量的关系,从网络系统内部与外界客流集散关系角度,建立了基于集散网络的城市轨道交通瓶颈识别模型。以成都轨道交通网络为例进行分析,验证了该瓶颈识别方法的有效性和实用性。案例结果表明模型方法可对大型实际客流集散网络的瓶颈进行有效识别,瓶颈车站主要集中于1号线南部,最拥堵车站为火车南站(13号车站)。与既有方法相比,本文方法能从车站角度客观量化网络系统实际运营拥堵情况。  相似文献   

19.
为了提高铁路货物运输网络安全性,科学合理分析铁路货运车站重要性,将货运车站看作节点,货运站间货物发送业务抽象为边和转移行为,构建成一个货物运输网络.在此基础上首先运用网页排序算法计算得到每个车站重要度时间序列样本,然后将每个车站重要度抽象为随机变量,接着用高斯混合分布拟合重要度样本得到各车站重要度分布函数,最后以分布函数均值作为重要度衡量数值.以中国铁路成都局集团有限公司为案例进行计算,结果表明:一、二、三、四等车站平均重要度分别为4.59、2.99、4.24和2.76,说明一等站和三等站是网络中最重要的车站集群,其中三等站小寨坝是网络中最核心节点,其重要度值为118.28,与实际数据统计分析结果一致,证明了该方法的有效性.  相似文献   

20.
分析了重大公共卫生灾害对城市轨道交通网络集成韧性的影响机理;基于韧性曲线模型对传统韧性测度方法进行了修正,构建了面向重大公共卫生灾害影响的城市轨道交通网络集成韧性测度方法;评估了城市轨道交通网络节点重要度水平,运用复杂网络构建了城市轨道交通网络拓扑模型,对节点客流进行了模拟分配;应用SEZIR传染病传播模型模拟了灾害传播过程,研究了城市轨道交通在重大公共卫生灾害背景下的集成韧性水平演化规律;以西安市疫情发展过程为研究对象,对主动客流限制下城市轨道交通网络的集成韧性水平进行了模拟和数值分析。研究结果表明:主动客流限制措施能够有效提高城市轨道交通网络对重大公共卫生灾害的阻断能力,当客流限制水平达到30%后,重大公共卫生灾害传播过程趋于平缓;主动客流限制措施会直接导致城市轨道交通网络运行效率降低,但能够提升城市轨道交通网络在重大公共卫生灾害影响下的集成韧性水平;当客流限制水平分别为70%、40%和20%时,城市轨道交通网络集成韧性水平的改善提升效果更加明显,累积改善效果分别可达到10.73%、46.87%和226.81%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号