首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
基于混沌理论的高速公路网短时交通流量预测研究   总被引:1,自引:0,他引:1  
随着高速公路网的建成及其交通流量的不断增大,对高速路网交通流实时控制和诱导服务的需求日益突出,而高速公路网短时交通流量的预测,不仅是交通流实时控制和诱导服务的基础和依据,而且预测结果的准确性对改善高速公路网的通行能力和服务水平有重要影响。基于混沌时间序列分析和预测的理论,建立了高速公路网短时交通流预测模型,计算给定区域高速公路网多断面短时交通流量预测值,结果表明利用多维混沌时间序列法预测高速公路网短时交通流量可行且具有较高的精度。  相似文献   

2.
对城市道路短时交通流进行准确预测是实现城市交通控制与交通诱导的关键。针对目前单一预测方法预测精度不高的问题,提出了小波与支持向量机(SVM)融合的预测新方法;同时为了避免SVM知识学习过程陷入局部最优的问题,采用粒子群算法(PSO)来优化SVM的关键参数,以提高对短时交通流量的预测精度。通过对武汉市道路交通流数据的实验分析,结果表明所提出的方法能够准确提取实验数据关键特征,显著提高SVM的预测精度,且结果比单一使用方法提高了近9%。  相似文献   

3.
罗中萍  宁丹 《交通科技》2020,(1):97-101
为提高短时交通流预测的精度,提出利用BP神经网络、RBF神经网络和ARIMA模型构建组合预测模型,该组合预测模型利用最优化原理进行权系数的分配,并且满足分配到的权值始终具有实际意义。通过对分配的权系数进行显著性检验,以确保组合预测模型中选用的单项预测方法显著相关。通过实例分析,验证了组合预测模型的有效性,结果表明,相比较单一的预测模型,组合预测模型具有更高的预测精度。  相似文献   

4.
基于相空间重构的短时交通流预测研究   总被引:17,自引:1,他引:17  
短时交通流预测在城市交通控制和管理中起着十分重要的作用。本文通过分析短时交通流量数据在时间序列上的特点,引入混沌理论的分析方法,从非线性时间序列预测的角度对交通流量预测进行了研究。通过计算交通流系统相空间重构参数,给出了一种基于相空间重构理论的局部预测方法,对城市道路路段交通流量进行短时预测,取得了较为满意的效果。  相似文献   

5.
短时交通流预测可为智能交通控制和管理提供决策依据,为了提高短时交通流的预测精度,统筹考虑短时交通流的混沌时间序列和非线性特征,提出一种基于相空间重构和PSO-RBF的短时交通流预测方法(PSR-PSO-RBF方法)。采用延迟嵌入定理,构造一个基于相空间重构的短时交通流时间序列;在剖析RBF神经网络不足之处的基础上,采用PSO算法,确保短时交通流预测的精确度和可靠性。实例分析结果表明,该方法可有效提高短时交通流的预测精度和可靠性,其预测误差较小。  相似文献   

6.
基于统计学习理论的交通流量时间序列预测   总被引:6,自引:0,他引:6  
针对城市交通“智能运输系统”,提出基于统计学习理论的交通流量时间序列预测,与传统统计学相比,统计学习理论能勉励在训练样本数很少的情况下达到很好分类推广能力。它具有收敛速度快,有效避免局部最小点的特点。对某一实际路口机车流量的实验结果验证了该方法的有效性和先进性,有望在交通流量时间序列预测方面得到广泛的应用。  相似文献   

7.
基于RBF径向神经网络的混沌时间序列预测   总被引:1,自引:0,他引:1  
文章提出了基于神经网络预测混沌时间序列的方法,分析了神经网络的基于工作原理,并用模拟产生的logistic方程数据与实际采集的海杂波数据一一进行了实际研究,得出了预测结果与混沌时间序这间关系的一些结论。  相似文献   

8.
根据交通流复杂性的特点,提出了一种基于S型函数标准化数据预处理的交通流量RBF网络预测方法,缩短了RBF网络训练时间;同时采用OLS算法有效降低RBF网络训练的随机性。实验仿真结果表明,该算法可用于实时交通流量及参数预测,并具有可靠的精度和较好的收敛速度。  相似文献   

9.
无检测器交叉口交通流量预测方法综合研究   总被引:10,自引:0,他引:10  
利用交叉口的相关性,对无检测器交叉口交通流量的预测问题进行研究,并应用长春市路网的实际数据对结果进行检验,取得了满意的效果。此研究成果有效地解决了无检测器交叉口交通流量的预测问题,它使得只有少数有检测器交叉口城市的交通流诱导成为可能,并为交叉口的宏观管理提供了理论基础。  相似文献   

10.
短时交通流预测研究   总被引:1,自引:0,他引:1  
对短时交通流进行了混沌识别,表明其具备混沌特性,利用重构相空间的嵌入维数确定神经网络的结构,建立了基于混沌理论的交通流神经网络模型,理论上验证了该方法对短时交通流预测的有效性。  相似文献   

11.
基于ARIMA与人工神经网络组合模型的交通流预测   总被引:7,自引:0,他引:7  
将自回归求和滑动平均(ARIMA)与人工神经网络组合模型用于短时交通流预测。利用ARIMA模型良好的线性拟合能力和人工神经网络强大的非线性关系映射能力,把交通流时间序列看成由线性自相关结构和非线性结构两部分组成,采用ARIMA模型对交通流序列的线性部分进行预测,用人工神经网络模型对其非线性残差部分进行预测。结果表明:组合模型的预测准确性高于各自单独使用时的准确性;组合方法发挥了2种模型各自的优势,是短期交通流预测的有效方法。  相似文献   

12.
基于时空特性和RBF神经网络的短时交通流预测   总被引:1,自引:0,他引:1  
针对实际交通流变化具有较明显的动态性、周相似性和相关性,提出一种基于交通流的时空变化特性和RBF神经网络的短时交通流预测方法。该方法充分挖掘和利用了交通流时间序列的周相似性和相关性,以及相邻路段上交通流的相互影响因素,结合RBF神经网络自学习、自组织、自适应功能和大范围的数据融合特性对交通流进行短时预测。用实例进行了仿真计算和分析,结果表明该方法能够提高交通流的预测精度。  相似文献   

13.
为了提高城市道路短时交通流预测的精度,提出了一种基于时空遗传粒子群支持向量机的短时交通流预测模型.通过主成分分析法对路网原始交通流量进行时空相关性分析,用较少的主成分代替原始交通流量并作为预测因子,在粒子群算法中引入遗传算法的交叉和变异因子,避免粒子群算法陷入局部最优.利用改进后的粒子群算法优化支持向量机参数,得到最优的支持向量机模型,并实现城市道路的短时交通流预测.以长春市路网的实测数据为基础进行了实例验证,结果表明,优化支持向量机参数时,遗传粒子群算法不会陷入局部最优,优化效果更好;与粒子群支持向量机模型和遗传粒子群支持向量机模型相比,所提出预测模型的相对误差波动较稳定,平均预测精度分别提高了4.96%和3.41%.  相似文献   

14.
高圣国 《公路》2011,(9):159-162
实时准确可靠的短时交通流预测是智能运输系统的基础,有很多种方法被用来对交通流进行预测.基于模式识别的交通流预测方法是较新的预测方法之一.提出一个用于短时交通流预测的模式和对应的模式识别算法,并对城区道路的交通流做了实验预测,结果表明在趋势上较为准确.  相似文献   

15.
比较分析神经网络和粗糙集在数据处理过程中的各自优缺点,提出一种基于二者强耦合集成方式的短时交通流预测模型。首先利用粗集对获取的交通流数据进行预处理,简化神经网络训练样本数据集并通过粗集属性约简提取决策规则;其次,利用所提取的规则直接确定神经网络的隐层数、隐层节点数及节点的相互关系;最后训练神经网络用于短时交通流预测。通过与单纯利用神经网络预测的结果进行比较,发现该模型降低了网络训练时间,提高了预测精度。  相似文献   

16.
以宁沪高速公路南京主线收费站数据为样本,使用现代时间序列模型预测收费道口交通流量,提出了基于交通流量预测的收费道口运营策略制定方法,并给出了应用实例。  相似文献   

17.
Real-time traffic flow forecasting is of great importance in the development of advanced traffic management systems and advanced traveler information systems. Traffic flow is evaluated using time series, and the Autoregressive Integrated Moving Average (ARIMA) model has been commonly used for determining the regression-type relationship between historical and future data. However, the performance of the ARIMA model is limited by the difficulty of capturing nonlinear patterns and the challenges of diagnosing permanent white noises. Hence, a hybrid method of ARIMA-EGARCH-M-GED was developed with the intent to address those limitations. It combines the linear ARIMA model with a nonlinear model of Exponent Generalized Autoregressive Conditional Heteroscedasticity (EGARCH) to capture heteroscedasticity (the variance of random error varying across the data) of traffic flow series. EGARCH in Mean (EGARCH-M), which corrects the expression of conditional variance by connecting the conditional mean directly with the variance, was introduced to better restrain the influence of abnormal data. Moreover, the tail of the generalized error distribution (GED) is better than that of the normal distribution in characterizing the features of time series, especially heteroscedasticity of residual sequences. Data collected from an interstate highway (I-80 in California) with a sampling period of 5 minutes were used to evaluate the performance of the proposed model. The results from the hybrid model were compared with ARIMA, an artificial neural network, and a K-nearest neighbor model. The results showed that the hybrid model outperformed the other methods in terms of accuracy and reliability. Overall, the proposed model performed well in tracking the features of measured data and controlling the impact of abnormal data.  相似文献   

18.
船舶流量预测是船舶交通流研究的重要内容,建立科学合理的船舶流量预测模型有助于航道的设计、规划和管理。将传统的单断面船舶交通流预测方法向多断面进行改进和推广,提出基于状态空间和卡尔曼滤波的多断面交通流预测模型。利用船舶交通流多断面流量数据的时间序列进行多维线性回归,并转化为状态空间模型形式;在此基础上由卡尔曼滤波算法对交通流量进行递推预测,得到多断面交通流的预测值。作为实证研究,分别对武汉长江大桥、武汉长江二桥2个断面,以及长江重庆段朝天门、万州、巫山3个断面进行实际数据分析来验算模型的有效性,并与单断面多维线性回归预测方法进行对比。结果表明,使用状态空间模型得到的武汉长江大桥、二桥预测结果的平均相对误差分别减少4.59%,0.97%;而重庆段3个连续观测点采用状态空间法预测比使用时间序列预测平均绝对误差和平均相对误差均有不同程度的降低,其中平均相对误差分别降低1.08%,4.28%, 3 .54%。因此,在不同时间维度上,该模型有助于提高多断面交通流预测精度。  相似文献   

19.
利用多个参数描述交通状态时,交通流数据表现为多维空间数据。提出了将属于每个状态的多维空间数据转换为一维时间序列的方法,对于此状态时间序列采用BP神经网络进行了下1个时段的交通状态预测。实验结果表明,多参数状态时间序列比单个参数时间序列能更准确地描述交通流状态变化过程,且算法简单,具有较强的预测实时性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号