首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 46 毫秒
1.
考虑非一致地震输入的车-桥系统动力响应分析   总被引:1,自引:0,他引:1  
针对地震对列车在高速铁路桥梁上走行安全性的影响,将桥梁在地震作用下的运动方程和车辆振动方程通过桥梁子系统与车辆子系统间的非线性轮轨接触关系联系起来,建立可考虑行波效应影响的长大跨度桥梁—列车耦合系统的地震反应分析模型。利用车—桥系统地震反应分析程序,对高速列车在不同特征地震荷载作用下通过某高速铁路连续梁桥进行仿真分析,研究列车速度和地震波行波效应对车—桥系统动力响应的影响。研究结果表明:地震波行波效应对车—桥系统的振动响应有重要影响,并不总是地震波行波速度越大,车辆的动力响应的计算结果越接近一致激励时的相应值;在进行大跨度连续梁桥车—桥系统的地震反应分析时,应按桥址处的实际场地土特性考虑地震波行波效应的影响;地震荷载作用时车体的横向振动加速度以及各项安全评价指标均随列车速度的提高而增大,在评价地震作用下高速铁路连续梁桥上列车的走行安全性时,必须考虑列车运行速度的影响,给出了确保地震发生时高速列车在桥上安全运行的临界速度限值。  相似文献   

2.
以某减隔振桥梁为例,建立该桥的三维有限元模型,考虑桩-土相互作用的影响,并根据混凝土和钢筋的材料特性,选取适宜的动力弹塑性本构模型,同时模拟了弹塑性减隔振球型钢支座,并采用人工拟合的3条地震动时程曲线对该桥进行了E2地震作用下的弹塑性时程分析,验算该桥在E2地震作用下的强度及变形。经过详细的验算与分析,验证了本桥设计的安全性和可靠性,并为实际工程中的非规则桥梁在E2地震作用下的抗震验算提供参考依据。  相似文献   

3.
从非规则铁路连续梁桥各桥墩协同抗震的角度,引入墩底摇摆隔震及支座减隔震,以1座(60+100+60)m连续梁桥为例,建立全桥动力分析模型进行地震反应分析,研究具有中等高度(20~30m)实心桥墩的非规则铁路连续梁桥采用摇摆隔震的适用性,以及全桥采用支座减隔震时的桥墩优化配筋准则。结果表明:采用摇摆隔震时,摇摆墩墩底恒载轴力大,提离位移敏感性高,地震作用下墩顶位移可控制在较小的范围且提离后墩底弯矩变化稳定,易随其余各墩协同抗震,经抗震性能验算确定摇摆墩配筋率为0.6%;采用支座减隔震时,桥墩本身地震反应贡献率最高可达71%,桥墩惯性力主控墩底内力,以地震作用下各墩同步保持弹性为原则,优化后各墩配筋率依次为0.7%,0.3%,0.5%和0.7%。以上2种优化均可使非规则铁路连续梁桥达到"大震不坏"的设防水平。  相似文献   

4.
为了深入了解高墩大跨预应力混凝土刚构连续梁桥在罕遇地震下结构的反应特征,利用Midas/Civil软件,混凝土和钢筋分别采用Mander本构关系和修正梅内戈托与平托本构关系,建立结构的纤维模型,对金水沟特大桥进行罕遇地震下的弹塑性抗震分析。分析结果表明,纤维模型可以有效模拟结构地震下的反应,在罕遇地震下的强度与变形均满足规范,满足大震不倒的抗震设防要求,并且还有一定的安全储备;对于金水沟这类高墩大跨刚构连续梁桥,横桥向墩底为控制截面,顺桥向连续梁墩墩底、刚构墩的墩顶与墩底均为控制截面,并且结构顺桥向的地震力较横桥向更为控制结构设计。  相似文献   

5.
研究目的:对设置阻尼器的斜拉桥进行地震反应数值模拟,为半主动控制和被动控制在大跨斜拉桥减震中的应用提供理论指导。研究方法:以一座大跨斜拉桥为实例,通过建立其有限元模型计算分析主动控制、半主动控制和被动控制对飘浮体系斜拉桥的减震效果,并分析地震行波效应对斜拉桥地震反应的影响。研究结论:半主动控制和被动控制对该斜拉桥的大部分地震反应均能取得良好的控制效果,但是使得桥梁塔底剪力等部分地震反应增大;不同频谱成分的地震动输入显著影响斜拉桥的地震反应和控制方法的减震效果;行波效应对斜拉桥主梁具有不利影响,但对桥塔抗震有利,并且对3种控制方法减震效果的不利影响很小。  相似文献   

6.
研究目的:新疆伊犁河大桥是连接218国道和313省道的重点控制工程,主桥为(66+5×120+66)m双肢薄壁连续刚构桥,该桥被称为新疆第一大桥。桥址位于7度地震区内,目前对这类大跨度连续刚构桥的地震反应研究很少。为保证该桥的抗震安全,研究该桥的地震响应规律,为同类桥梁设计提供参考依据。研究结论:通过分析得出:(1)对于连续刚构桥而言,塑性铰的位置出现在刚构墩的墩顶及墩底,抗震设计时需要加强此处的设计;(2)该大桥在地震反应下,虽然出现塑性铰,但与破坏位移还有一定的距离;(3)该桥具有一定的延性能力,满足大震不倒的要求。  相似文献   

7.
大跨径连续刚构桥的随机地震动响应分析   总被引:1,自引:0,他引:1  
以苏通长江大桥辅航道桥为工程背景,考虑结构自重引起几何非线性以及桩土相互影响,建立该桥的地震分析模型,分析行波效应、部分相干效应和局部场地效应对结构地震响应的影响规律。结果表明:行波效应总体上削弱结构的位移响应,对内力响应的影响较大,在相位差为1s的情况下,面内弯矩响应的增幅达到25%;局部场地效应对内力及位移响应的影响均较大;相干效应削弱桥梁主墩的弯矩响应。  相似文献   

8.
基于多自由度桥梁体系地震能量反应方程,以一座铅芯橡胶支座隔震连续梁桥为例,选取5条具有代表性的地震波利用有限元的方法对全桥进行非线性动力时程分析,研究地震动峰值加速度、支座铅芯屈服力和屈服后刚度对桥梁结构地震能量反应的影响。分析结果表明:地震动峰值加速度对桥梁结构地震能量反应的影响较大,但对支座耗能比及阻尼耗能比的影响较小;支座铅芯屈服力及屈服后刚度对桥梁结构地震能量反应的影响较大,铅芯屈服力及屈服后刚度越大,支座耗能比越小,阻尼耗能比越大,反之亦然。增大支座铅芯屈服力及屈服后刚度不利于支座的滞回耗能,因此,在保证强度及位移要求的前提下应尽量采用铅芯屈服力及屈服后刚度较低的铅芯隔震橡胶支座。  相似文献   

9.
高速铁路南京大胜关长江大桥地震响应分析   总被引:1,自引:0,他引:1  
采用大型通用有限元软件ANSYS,建立南京大胜关长江大桥主跨的连续钢桁架拱桥的有限元模型,运用反应谱分析法对全桥结构进行地震响应分析.选用经过加速度幅值调整的El-Centro地震波作为输入地震波,进行大跨度连续钢桁架拱桥一致激励下以及4种不同波速地震行波作用下的全桥结构内力和位移时程响应分析.分析结果表明:南京大胜关桥的整体结构较柔,采用反应谱法计算地震波作用下的桥梁地震响应和采用时程分析法得到的一致激励和多点激励下的桥梁地震响应差别较大,多点激励下的横桥向和竖向地震位移响应是一致激励地震时程计算得到的位移响应的2~3倍;在地震波波速为500或1 000 m·s-1时,桥梁结构关键位置杆件的弯矩达到最大.因此,在进行大跨度拱桥的地震响应动态时程分析时,应该考虑多点激励,以反映桥梁结构在真实地震作用下的实际受力状态和变形性能.  相似文献   

10.
基于环境振动的既有预应力连续刚构桥地震响应分析   总被引:2,自引:0,他引:2  
建立了基于环境振动的既有预应力混凝土连续刚构桥的地震响应分析方法。该方法主要包括现场环境振动实验与系统参数识别、桥梁有限元建模、基于动力的有限元模型参数修正、桥梁地震波选择以及桥梁动力时程反应分析等步骤。利用该方法进行了泉州后渚大桥———五跨预应力混凝土连续刚构桥的动力时程反应分析,结果表明:必须考虑竖向地震动和行波效应的影响,最不利截面位于墩梁结合面和墩底。此类分析对于桥梁养护与维修、长期健康监测具有重要的意义。  相似文献   

11.
多振型效应对铁路高柔桥墩弹塑性地震响应的影响   总被引:1,自引:0,他引:1  
李宇  朱晞  杨庆山 《铁道学报》2011,(11):99-105
对FEMA356和ATC-40中考虑多自度效应的非线性静力分析法进行改进。并在FEMA440考虑土-结构相互作用能力谱法基础上,以我国西南某铁路特大桥桥墩为研究对象,选取与我国《铁路工程抗震规范》Ⅱ类场地相符合的80条强震记录,利用FEMA440性能点轨迹法求解高柔桥墩结构延性及性能点;并与80条强震记录非线性时程分析计算结果平均值进行比较。验证本文改进的非线性静力分析法反映高柔桥墩多自度效应的合理性,及考虑土-结构相互作用能力谱法在铁路桥梁工程中应用的可行性。  相似文献   

12.
大跨度斜拉桥各支承之间距离较大,地震波的传播速度有限,地震波到达各支承的时间存在差异,因此采用一致激励分析方法与实际情况不符。以某大跨度斜拉桥为算例,其主跨为680m,建立数值有限元模型。主要分析主梁与主塔在单维及多维随机地震动激励下,同时考虑行波效应的地震响应规律,并作了对比分析。结果表明:与一致激励相比,当视波速为200m/s与300m/s时,纵向地震动激励下,主梁跨中纵向位移分别减小了42.3%和44.8%,横向地震动激励下,1号塔和2号塔柱底部的竖向弯矩分别减小了25.9%、19.9%和0.4%、1.2%。多维地震动激励下较单维地震动激励下结构响应大,因此,大跨度斜拉桥抗震研究应充分考虑地震动的多维性与行波效应的影响。  相似文献   

13.
以某深水库区铁路大跨度斜拉桥为研究对象,建立考虑动水压力效应的全桥空间动力计算模型,分析动水压力对桥梁动力特性及弹性地震反应的影响程度。结果表明:桥塔附加水体质量对斜拉桥的体系纵漂及体系对称竖弯振型影响较明显;考虑塔身的水体附加质量时,塔身控制截面的地震反应增加较大,且顺桥向地震反应增加明显大于横桥向的地震反应。因此对处在深水库区的铁路大跨桥梁,应考虑水体附加质量对桥梁地震响应的增大效应,否则设计将偏于不安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号