首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从提高光催化材料性能出发,以锐钛型纳米TiO2作为光催化材料应用在沥青路面中。采用A(将纳米TiO2均匀分散在沥青中,以沥青为载体)和B(将纳米TiO2与矿粉均匀混合,以矿粉为载体)两种掺加方式将5%的纳米TiO2掺入到沥青混合料中,成型OGFC—10车辙板试件进行试验,确定最佳的掺加方式。研究不同掺量、光照强度对纳米TiO2光催化性能的影响,并对其路用性能进行试验分析。结果表明:相比B方式,A方式下成型的试件其光催化降解汽车尾气的效果更好,故选定A方式为纳米TiO2的后续试验研究的掺加方式;随着纳米TiO2掺量的不断增加,试件对HC、CO和NO三种尾气成分的降解效果越来越好,从综合降解效果和经济性考虑,选定5%为最佳掺量;纳米TiO2对尾气的降解效果随光照强度的增强越来越好;混合料的各项路用性能随着纳米TiO2的掺入而变得更好,所以实际工程应用中不必考虑其对混合料路用性能的不利影响。  相似文献   

2.
从提高光催化材料性能出发,以锐钛型纳米TiO2作为光催化材料应用在沥青路面中。采用 A(将纳米TiO2均匀分散在沥青中,以沥青为载体) 和B (将纳米TiO2与矿粉均匀混合,以矿粉 为载体) 两种掺加方式将5%的纳米TiO2掺入到沥青混合料中,成型OGFC—10 车辙板试件进行 试验,确定最佳的掺加方式。研究不同掺量、光照强度对纳米TiO2光催化性能的影响,并对其路 用性能进行试验分析。结果表明:相比B方式,A方式下成型的试件其光催化降解汽车尾气的效 果更好,故选定A方式为纳米TiO2的后续试验研究的掺加方式;随着纳米TiO2掺量的不断增加, 试件对HC、CO和NO三种尾气成分的降解效果越来越好,从综合降解效果和经济性考虑,选定 5%为最佳掺量;纳米TiO2对尾气的降解效果随光照强度的增强越来越好;混合料的各项路用性能 随着纳米TiO2的掺入而变得更好,所以实际工程应用中不必考虑其对混合料路用性能的不利影响。  相似文献   

3.
《黑龙江交通科技》2017,(6):176-177
随着我国汽车保有量的逐年上升,汽车尾气的排放危害日渐加剧,给人类的生存环境和身体健康造成了极大的威胁。纳米TiO_2光催化材料在光照条件下,能有效地分解汽车尾气中NOx、HC、CO等有害物质,改善空气质量,减少环境污染。文中论述了目前我国汽车尾气的排放状态、尾气对身体健康的危害,归纳了近年来纳米TiO_2光催化降解汽车尾气技术在我国的发展及研究现状。  相似文献   

4.
主要从大粒径沥青混合料的高温稳定性、水稳定性以及疲劳特性等三个方面对大粒径沥青混合料的路用性能进行分析,并对三个方面特性的实验方法和相关要求进行了论述,以期对大粒径沥青混合料的研究起到一定的指导作用。  相似文献   

5.
通过对配制的光催化降解汽车尾气的材料进行试验研究,观测到溶液的渗透深度和分散效果均满足实际应用需求,并通过实例阐述光催化材料在降解汽车尾气方面的具体应用,这为我国的汽车尾气的绿色降解研究提供了借鉴和依据。  相似文献   

6.
沥青混合料搅拌设备是沥青路面机械化施工的关键设备,其性能直接决定着沥青混合料的生产质量和效率。开展沥青混合料搅拌设备节能减排及其能效等级划分的研究,对提高搅拌设备用能效率和降低污染物排放,具有重要意义。鉴于此,针对我国广泛使用的间歇强制式沥青混合料搅拌设备,探讨研究该设备的能效等级,对存在的问题进行了分析并提出了相关建议。  相似文献   

7.
沥青混合料是由多种成分构成的复杂材料,沥青、矿料和胶结料的性质及相互作用对混合料的性质起决定性作用。本文分析了沥青混合料内部结构以及强度原理,并进行了提高沥青混合料高温稳定性的方法措施研究,总结了沥青混合料高温稳定性的影响因素。  相似文献   

8.
为了对鸭绿江大桥ERS铺装体系中的高粘高弹沥青混合料SMA-11的路用性能进行研究,对高粘高弹沥青以及高粘高弹沥青混合料SMA-11进行了试验,并与普通改性沥青混合料进行了对比,结果表明,高粘高弹沥青以及高粘高弹沥青混合料的高低温性能均优于普通改性沥青及普通改性沥青混合料SMA,高粘高弹沥青混合料更适宜用于钢桥面铺装中,高粘高弹沥青高温粘度较大,在配合比设计以及施工过程中要注意混合料的工作性能以及沥青在管路中的流动性能,研究成果可以为类似工程提供参考。  相似文献   

9.
首先分析了沥青路面施工中产生离析的主要原因,然后提出了相关的防治措施,并结合工程实践进行了试验研究,结果表明,沥青混合料转运车的使用以及双层篷布加棉絮覆盖方式对减少沥青混合料的离析有明显作用。  相似文献   

10.
张健 《交通标准化》2014,(5):116-119
结合如皋养护工程,对厂拌热再生AC-16C沥青混合料进行了相关应用研究,重点对旧料的掺配比例确定及相关配合比设计方法进行分析,并通过性能验证表明,厂拌热再生沥青混合料路用性能达到或超过新拌沥青混合料。同时对AC-16C厂拌热再生混合料施工工艺及控制需要注意的事项进行了探讨。  相似文献   

11.
大粒径透水性沥青混合料(以下简称LSPM)是指混合料最大公称粒径大于26.5mm,具有一定空隙率能够将水分自由排出路面结构的沥青混合料,LSPM通常用作路面结构中的基层。这种混合料的提出是来自美国一些州的经验,美国中西部的一些州对应用了三十多年以上而运营状况相对良好的一些典型路面进行了相关的调查,发现许多成功的路面其基层采用的是较大粒径的单粒径嵌挤型沥青混合料如灌入式沥青基层。因此提出以单粒径形成嵌挤为条件进行混合料的设计,从而形成开级配大粒径透水性沥青混合料(LSPM)。美国NCHRP联合攻关项目对大粒径沥青混合料也进行了相关研究,最终得到了研究报告NCHRP Report 386,但是研究报告主要是针对于大量实体工程的调查而且偏重于密级配大粒径沥青混合料,而且NCHRP Report 386对LSPM材料与结构设计并没有进行系统的研究。我们在国外研究的基础上从2001年开始进行了大量的研究和应用,并对其级配与各项技术指标进行研究,使其更符合我国具体实际情况,根据研究结果与使用状况提出了本设计与施工指南,更好地指导工程实践。  相似文献   

12.
具有良好降噪、排水功能的Novachip沥青混合料超薄磨耗层,是一种应用较为广泛的改性沥青混凝土面层。基于相关理论研究,针对施工中出现的问题,对沥青混合料进行了高温稳定性以及谢伦堡析漏等实验,确定了施工路段最佳的沥青用量,最后通过对其路面性能的研究,验证了Novachip混合料的可行性,为今后沥青混合料超薄磨耗层的设计施工提供数据支持。  相似文献   

13.
沥青混合料是道路工程施工中的常用材料,通过沥青混合料检测,可以对沥青混合料的使用性能进行检测,从而反映出道路工程施工质量以及运行情况。首先对道路工程沥青混合料检测的重要性进行了介绍,然后对沥青混合料应用的基本质量要求进行了分析,并对道路工程沥青混合料检测措施进行了详细探究。  相似文献   

14.
为了提高沥青混合料的路用性能,在基质沥青中加入橡胶粉进行复合改性,对橡胶改性沥青的性能进行技术指标测试,并分析橡胶粉与沥青的作用机理.通过室内试验,对橡胶改性沥青混合料进行了车辙试验、低温弯曲试验和残留稳定度试验,并与基质沥青混合料、SBS改性沥青混合料进行对比,检验橡胶改性沥青混合料的高、低温稳定性能以及抗水损害性.研究表明,橡胶改性沥青混合料的改性效果显著.  相似文献   

15.
随着经济的不断发展,我国公路交通量迅速增长,沥青路面普遍出现了车辙以及耐久性较差等路面质量问题,大粒径透水沥青混合料作为柔性联接层,可以有效预防路面的车辙以及反射裂缝等病害。首先分析大粒径透水沥青混合料的优势,进而详细论述了大粒径透水沥青混合料的路用性能,可以为类似应用研究提供可靠的参考。  相似文献   

16.
为解决长陡坡路段车辙病害严重的问题,结合工程实例,分别从机理分析、沥青制备、室内沥青混合料车辙试验以及现场试验分析等方面对高模量沥青进行研究。研究结果表明:高模量沥青混合料比传统的SBS改性沥青混合料抗车辙性能提高近30%,改善作用明显,可为相关工程应用提供参考。  相似文献   

17.
通过对配制的先催化降解汽车尾气的材料进行试验研究,现测到溶液的渗透深度和分散效果均满足实际应用需求,并通过实例阐述光催化材料在降解汽车尾气方面的具体应用,这为我国的汽车尾气的绿色降解研究提供了借鉴和依据.  相似文献   

18.
为合理有效的利用废旧材料,对废旧沥青混合料中沥青的质量分数和矿料级配进行了测定;对再生沥青混合料进行合理的配合比设计,确定了新、旧矿料的掺加规格、比例以及再生沥青用量;并对规定配比再生沥青混合料的路用性能进行综合研究。试验结果表明,添加再生剂的再生沥青混合料可以获得良好的水稳定性、抗车辙能力、低温抗裂性和疲劳性能。  相似文献   

19.
根据国外排水沥青混合料成功经验,结合我国国情,对排水沥青混合料的物理力学性能,即排水沥青混合料的马歇尔稳定度、流值、残留稳定度、劈裂强度、动稳定度、透水系数、飞散系数以及滴落等指标进行了试验测定并分析其规律性,确定排水沥青混合料的级配、沥青最佳用量及空隙率与强度等指标的关系。  相似文献   

20.
为了综合提升沥青混合料的路用性能,提出了在基质沥青中添加天然岩沥青和矿物纤维进行复合改性,并对复合改性沥青混合料的性能进行验证。研究结果表明:复合改性沥青中岩沥青以及矿物纤维的最佳掺量分别为9%和6%;复合改性沥青混合料的稳定度、动稳定度、低温弯曲应变以及疲劳寿命分别是普通沥青混合料的1.50、1.69、1.37和1.39倍,水稳定性略有提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号