首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对自动驾驶车辆换道轨迹规划时的操纵稳定性问题,基于CarSim/Simulink仿真平台建立了车辆动力学模型,构建了轨迹规划系统框架,通过轨迹信息后处理并提出了目标函数设计,进行了横向控制序列采样以保证车辆的稳定与极限性能,完成了算法对轨迹的综合评价选优。随后开展了仿真试验,对比分析了轨迹跟踪控制系统下的实际轨迹、最优规划方法所规划的换道轨迹。仿真结果表明,该轨迹规划系统框架及算法模型能有效提高车辆的操纵稳定性,可实现冰雪路面等极端工况下自动驾驶车辆换道轨迹规划。  相似文献   

2.
针对自动驾驶车辆换道过程中存在的车辆规划轨迹与人类驾驶员决策轨迹偏差较大问题,开发了一种基于驾驶员轨迹特征学习的换道轨迹规划算法.采集驾驶员换道轨迹曲线函数特征,在轨迹采样及成本优化相结合的轨迹规划基础上,采用最大熵逆强化学习策略迭代更新成本函数权重,并依据学习的成本函数筛选备选采样轨迹,生成反映驾驶员轨迹特征的自动驾...  相似文献   

3.
根据对自动驾驶车辆的平行泊车场景的分析,提出一种基于采样的自动驾驶车辆平行泊车轨迹规划方法.该方法把自动驾驶车辆平行泊车的轨迹规划解耦成路径规划和速度规划.通过对泊车起始点区域采样,生成一系列曲率连续、满足路径约束的泊车路径曲线,利用多目标评价函数选取最优的泊车路径.然后,在最优泊车路径基础上,通过对时间采样选取时间最...  相似文献   

4.
目前车辆的自动驾驶系统在弯道路况有较少的介入。基于Frenet坐标系,针对自动驾驶汽车在弯道处的换道策略,提出了一种横纵向解耦的处理动态障碍物的轨迹规划算法,解决了传统耦合规划难以兼顾曲线拟合效率与安全性。横向规划基于准均匀三次B样条曲线,纵向规划则通过动态规划以及二次优化的思想。采用模型预测控制进行换道轨迹的跟踪与控制。最终使用Matlab/Simulink仿真验证,所提出的弯道换道轨迹算法能平稳换道并安全避让动态障碍物。  相似文献   

5.
在自动驾驶车辆与人工驾驶车辆混行的复杂交通环境中,如何减小驾驶行为截然不同的2类车辆间的复杂相互作用对于车辆行驶安全性、乘坐舒适性和交通通行效率的影响,是当前自动驾驶决策与控制领域亟待解决的关键问题。提出了一个人机混驾环境下人工驾驶车辆与自动驾驶车辆之间的非合作博弈交互框架。首先,综合考虑车辆加速度线性递减的驾驶人纵向操纵特性、差异化配合程度和不同的延迟响应特性,建立人工驾驶车辆的纵向博弈策略。其次,考虑自动驾驶车辆与周围车辆的安全性约束,以及自动驾驶车辆在换道过程中的舒适性和通行效率目标,设计了自动驾驶车辆的纵向博弈策略。然后,基于主从博弈理论对不同混驾环境下人工驾驶车辆与自动驾驶车辆的博弈交互问题进行求解,得到最优的换道间隙和自动驾驶车辆的纵向速度轨迹,并采用模型预测控制方法规划出自动驾驶车辆的横向安全换道轨迹。最后,根据人工驾驶车辆不同配合度和延迟响应时间的差异,设计了多组人机混驾试验工况进行验证。试验结果表明:自动驾驶车辆能够快速准确识别人工驾驶车辆的配合度,选择出最优的目标换道间隙,并与间隙周围的自动驾驶车辆协作来汇入目标间隙。在换道过程中,自动驾驶车辆始终与周围车辆保持安全...  相似文献   

6.
鉴于在车辆换道切入的场景中,自动驾驶车辆容易出现频繁的误减速、误避让,而造成通行能力和乘员舒适性的下降,提出一种基于主旁车动态博弈的切入场景决策规划算法。在行为决策层,根据切入场景中主旁车的冲突性关系,联立相关车辆运动方程建立整体系统的运动模型,构建考虑旁车状态的切入博弈模型,设计安全性和舒适性收益函数,进行驾驶行为博弈,输出行为决策结果。在轨迹规划层,根据车辆间距构建避障约束条件,以Sigmoid函数轨迹的变曲率和速度切向矢量的时间分量来构建车辆动力学约束。同时以加权收益方式联合考虑驾驶习惯和舒适性等需求,建立轨迹规划数学模型,求解得到满足上层博弈决策要求的运动轨迹。Carsim-Simulink联合仿真结果表明,在不同的初始条件下主车与切入的旁车能进行多种形式的合理的交互决策,准确完成切入场景下的运动规划任务,车辆能准确跟踪输出的轨迹,更符合一般驾驶习惯,提高了车辆的舒适性。  相似文献   

7.
自动驾驶系统需具备响应驾驶人意图且有效执行驾驶人意图的能力,以解决人机协作系统中存在的人机冲突、人机优势融合等问题。提出决策层“以人为主”、执行层“以机为首”的人机协作关系,构建包含驾驶人意图识别模块、基于意图识别的轨迹规划模块与轨迹跟踪控制模块的人机协作一体化控制系统框架,并重点对轨迹规划模块与轨迹跟踪控制模块开展研究。首先,结合双向长短期记忆神经网络(Bi-directional Long Short Term Memory,Bi-LSTM)与注意力机制模型建立换道轨迹规划模型;在改进人工势场算法中引入模型预测控制并建立避险轨迹规划模型。其次,通过开展驾驶模拟器试验建立换道与避险驾驶行为数据集,为拟人化模型训练和模型参数确定提供支撑。然后,综合考虑车辆状态变量、控制输入与输出以及道路结构参数等约束条件,构建基于最优转向前轮输入的线性时变模型预测轨迹跟踪控制器,实现对规划轨迹的精准跟踪。最后,基于驾驶模拟器搭建人机协作系统硬件在环测试平台,对轨迹规划模块与轨迹跟踪控制模块开展硬件在环测试与验证。结果表明:换道与避险规划轨迹光滑且平稳,轨迹跟踪控制过程中,车辆航向角与前轮转角变化平稳;所构建的轨迹规划与轨迹跟踪控制模块在确保安全性前提下可实现不同场景中的车辆运动控制需求。  相似文献   

8.
为改善现有的自动驾驶换道轨迹规划模型产生的换道轨迹与真实的换道轨迹存在较大偏差的问题,提出了一种改进LSTM-NN的安全敏感性深度学习模型,该模型可以缓解当前自动驾驶轨迹规划存在的不足,输出轨迹既保证了较高的精度又提高了安全性。CarSim仿真软件模拟了本模型产生轨迹的可跟踪性,结果显示轨迹非常平滑,并且自动驾驶车辆可以高效、安全地完成换道。  相似文献   

9.
为了使自动驾驶汽车在人机混驾环境下能安全、高效地左转通过无信号交叉口,在借鉴人类驾驶人左转时会对周围车辆驾驶意图进行提前预判的基础上,提出了一种基于周围车辆驾驶意图预测的自动驾驶汽车左转运动规划模型。首先将无信号交叉口处周围车辆的驾驶意图分为左转、右转、直行3种类型,利用相关向量机预测周围车辆驾驶意图,以概率形式输出意图预测结果并实时更新,进一步界定自动驾驶汽车与周围车辆的潜在冲突区域并判断是否存在时空冲突;接着,在充分考虑他车速度、航向及车辆到达冲突区域边界距离的基础上建立基于部分可观测马尔可夫决策过程的自动驾驶汽车左转运动规划模型,生成一系列期望加速度;最后,基于Prescan-Simulink联合仿真平台搭建无信号交叉口仿真场景,对所提左转运动规划方法进行仿真验证,将基于博弈论的运动规划方法、基于人工势场理论的运动规划方法与所提出的方法进行比较,并选取行进比例达到1所用的时间和碰撞次数作为评价指标。研究结果表明:基于相关向量机的驾驶意图预测方法可在自动驾驶汽车到达交叉口之前准确预测出他车驾驶意图;基于部分可观测马尔可夫决策过程的左转运动规划方法能够通过速度调整策略实现人机混驾环境下自动驾驶汽车与周围车辆在无信号交叉口处的交互;不同算法对比效果表明,所提左转运动规划方法在自动驾驶汽车与不同数量周围车辆交互的仿真场景下均可有效避免碰撞事故发生并提高自动驾驶汽车左转通过无信号交叉口的效率。  相似文献   

10.
为解决目前量产自动泊车系统泊车成功率低、泊车完成后车辆姿态偏斜等问题,研究搭建基于阿克曼转向几何学和车辆运动学的车辆运动模型,构建基于可行驶区域的栅格电子地图,在几何路径规划方法中融入基于轨迹预判的碰撞约束方法和路径居中算法,采用车辆膨胀轮廓模型,最大程度利用电子地图可行驶区域和保证路径安全性,设计出一种基于轨迹预判的垂直泊车路径规划算法,并通过仿真测试和实车测试验证算法的可行性。该算法可大大提高泊车成功率,能帮助解决泊车完成后车辆偏斜不居中的问题。  相似文献   

11.
唐晓峰  杨林  袁静妮 《汽车工程》2020,42(5):567-573
针对自动驾驶车辆的多阶段多约束轨迹优化问题,根据高斯伪谱法的思路,建立了基于场景的环境模型和车辆动力学模型,设置了车辆动力学约束、速度约束等各种状态约束,包括自动驾驶在每一阶段的起始状态和终了状态等参数的约束条件。采用高斯伪谱法通过将控制变量和状态变量进行离散化来获得其近似表达式,从而将自动驾驶的轨迹规划问题转化成性能指标的优化问题,最终求得了自动驾驶车辆的安全、有效的路径轨迹。研究结果表明:高斯伪谱法具有计算精度高、求解速度快的特点,能在考虑各种约束条件下,实现多阶段轨迹优化。  相似文献   

12.
交叉路口是自动驾驶开发过程中面临的复杂交通场景,采用高精度地图方案成本高昂,而仅通过车载传感器难以有效识别路口形状,因此,提出了一种基于开源拓扑地图与视觉可行驶区域检测技术的路口局部路径规划算法。首先,基于开源拓扑地图采用A*算法规划全局导航路径作为引导线,然后通过语义分割技术识别当前可行驶区域,并结合车辆实时定位信息,在路口确定局部路径的起点、终点与一组备选控制点,最后采用贝塞尔曲线插值方法,得到备选路径的曲线簇,根据多维度加权代价函数结果选取最优局部路径,进而实现车辆在路口转弯过程的自动驾驶。实验结果表明,该策略能够在不依赖高精地图的情况下,在路口处有效规划出局部路径,提高自动驾驶车辆在路口处的通过能力,路口通过率可达99%。该策略不依赖高精地图和激光雷达,对于自动驾驶量产降本具有重大意义。  相似文献   

13.
为了提高信号交叉口自动驾驶车辆左转运动规划的适应性、鲁棒性与类人化程度,提出一种考虑多目标需求的自动驾驶类人化全局运动规划方法。首先,基于西安市北大街信号交叉口规格构建结构化场景,结合车辆运动学模型与道路几何规格定义自动驾驶车辆规范化行驶安全域和车辆运动参数约束条件;其次,根据信号灯状态、道路限速与车辆性能约束制定上游阶段车辆不停车通行规则,以行驶安全、燃油消耗、通行效率与驾驶舒适度作为目标性能函数,构建类人化全局多目标优化模型,通过人类驾驶的车辆预转弯行为耦合上游阶段与转弯阶段;再次,针对非线性运动规划模型变量与约束规模化问题,采用粒子群算法与全联立正交配置有限元方法求解不同阶段车辆运动轨迹的最优解;最后,试验建立Prescan与MATLAB/Simulink联合仿真平台,从多目标性能、适应性以及合理性方面验证该模型的综合性能。结果表明:在以信号灯状态和车辆初速度为变量建立的12种工况下,该模型与人类驾驶车辆、混合运动规划模型相比,平均可分别节省燃油消耗63.7%和29.5%,平均通行延时分别降低3、0.9 s,且轨迹曲率更平缓,最大横向加速度与方向盘转角平方和的平均值最小,证明该模型的多目标性能更好;在以路缘石半径与车道数目为变量建立的7种交叉口规格工况下,所提出模型的车辆轨迹平滑,轨迹安全域边界距离始终大于1.4 m,曲率变化符合期望且峰值小于0.22 m-1,说明该模型具有较好的适应性;在自由/固定终端时刻条件下,该模型规划的车辆空间路径、速度、曲率及航向角的变化与目标权重变化保持一致,验证了模型的合理性。  相似文献   

14.
在未来自动驾驶环境下,自动驾驶车辆之间能相互配合、相互穿插地通过交叉口,而无需信号灯控制。因此,有必要研究新一代的能保障自动驾驶车辆安全高效通行的交叉口控制模型。已有控制模型可分为基于交叉口空间离散的控制模型和基于交叉口冲突点分析的控制模型,目前主要存在控制方式和模型非线性等方面的不足。建立了基于混合整数线性规划(MILP)的自动驾驶交叉口控制(Autonomous Intersection Control,AIC)模型,设计交叉口自由转向车道,允许交叉口所有进口道都能"左直右"通行,将交叉口空间离散为等距网格并建立网格坐标方程,考虑车辆在交叉口内部的行驶轨迹,建立车辆轨迹的上边界和下边界方程,确定行驶轨迹压过的交叉口网格,并建立网格被车辆路径占用的时间方程,使用同一网格同一时间只能被一台车辆占用的冲突点约束保障交叉口安全通行。模型以所有车辆通过交叉口的总延误最低为目标函数,通过将约束条件线性化处理,使用AMPL (A Mathematical Programming Language)并调用Gurobi数学规划优化器对模型进行求解。最后对模型效益进行了案例分析。结果表明:所提模型能有效处理自由转向车道的交通流到达模式,对比已有模型经常采用的先到先服务控制策略,该模型能整体优化车辆通行方案,降低车均延误50.51%,降低最大车辆延误29.12%,同时交叉口空间利用率提高了66.17%。  相似文献   

15.
《汽车工程》2021,43(7)
针对自动驾驶汽车侧方和后方的主动避撞问题,提出了融合障碍物运动预测的预测风险场和基于预测风险场的运动规划方法。在Frenet坐标系下,通过运动学模型预测未来场景下的各障碍车信息,建立基于道路纵向、横向和时间3个维度的预测风险场。考虑车辆动力学和速度、加速度与曲率约束,采用动态规划方法完成行为决策,并使用多项式曲线和二次规划方法对决策轨迹进行优化。结果表明:预测风险场能准确识别周围障碍车潜在风险随时间的变化趋势,并规划出满足各项约束的避撞轨迹,保障车辆运行的安全性和稳定性。  相似文献   

16.
基于自动换道控制技术中融合个性化驾驶人风格的研究,建立考虑驾驶人风格的车辆换道轨迹规划及控制模型以提高换道规划控制模型对不同风格驾驶人的适用性,在保证安全性的基础上进一步满足驾驶人的个性化需求。首先通过问卷调查的方式采集得到了212份驾驶人风格量表数据,采用主成分分析法和K均值(K-means)聚类分析法将驾驶人按驾驶风格分为激进型、普通型和谨慎型,并通过驾驶模拟器试验采集不同风格驾驶人分别在自车道前车、目标车道前车和目标车道后车影响下的换道行为数据。然后对椭圆车辆模型进行改进,以描述不同风格驾驶人的行车安全区域,并据此构建3种典型工况下不同风格驾驶人的换道最小安全距离模型,结合驾驶舒适性约束、车辆几何位置约束以及不同风格驾驶人的换道行为数据,以换道纵向位移最短为目标,实现适应驾驶人风格的换道轨迹规划。最后以基于预瞄的路径跟踪模型作为前馈量,设计基于动力学的线性二次型最优(LQR)反馈控制器,通过调节控制权重矩阵实现3种工况下不同驾驶人风格的换道轨迹跟踪。PreScan和MATLAB/Simulink联合仿真结果表明:所设计的考虑驾驶人风格的换道轨迹规划及跟踪控制模型能够实现不同驾驶风格的自动换道轨迹规划及跟踪控制,可满足驾驶人个性化换道需求。  相似文献   

17.
路径跟随是依照规划轨迹信息通过对执行元件的控制实现沿期望轨迹行驶,控制算法对实现路径跟随非常重要。针对自动驾驶车辆的侧向控制技术,文章研究了基于最优预瞄理论的路径跟随控制,建立车辆二自由度模型和预瞄误差模型,设计模型预测控制(MPC)侧向跟随控制器以提高跟随精度。利用CarSim-Simulink联合仿真,仿真结果表明,该算法策略能稳定跟踪规划路径。  相似文献   

18.
为解决高速公路环境下的车辆自动变道问题,采用Frenet坐标系下的五次多项式算法对不同工况设计规划轨迹,实现自动变道辅助。首先根据自车状态与周围车辆状态预计变道所需直线距离,并在一定范围内进行多次五次多项式轨迹规划,得到备选轨迹集。以加速度最小为优化目标,对备选轨迹集中的所有轨迹进行评价,得到最佳换道轨迹。使用CarSim进行车辆和道路建模,在Matlab/Simulink中进行轨迹规划,并使用动力学模型的模型预测控制进行轨迹跟踪,验证了换道辅助系统的有效性。  相似文献   

19.
路径规划是智能汽车的关键技术之一,其中轨迹规划是智能汽车实现自动泊车的前提。基于Hybrid A*算法对智能汽车的泊车轨迹规划展开研究,通过启发函数优化解决智能汽车泊车时反复倒车或变更行驶方向的问题,通过碰撞检测策略改进,解决泊车中车辆安全距离保持的问题。通过MATLAB软件仿真,算法可实现在倒车入库、侧方位停车和停车场寻径停车等环境下的轨迹规划,验证了改进算法的有效性和实用性。  相似文献   

20.
《汽车工程》2021,43(8)
针对自动驾驶车辆轨迹规划控制算法无法满足乘员个性化舒适性问题,结合自然驾驶数据和乘员乘坐舒适性需求,建立乘员个性化舒适性辨识方法。首先确定主观舒适性评价方式,基于标准ISO2631搭建频域和时域加权滤波函数,提取自动驾驶汽车乘员舒适性主客观特征参数,辨识乘员个性化舒适性与自动驾驶车辆行驶规划参数关系;随后搭建自然驾驶数采平台,采集影响舒适性的行驶参数和主客观参数;利用因子分析对行驶参数降维,得到三向运动(横向冲击、纵向加速、垂向振动)、行驶风险和效率影响因子;最后运用加权分析方法辨识模型,并通过卡尔曼滤波算法快速准确识别乘员个性化需求,得到舒适度加权方均根阈值。辨识结果表明:乘员主客观舒适度相关性达85.8%;三向运动因子对乘员舒适性影响大于行驶风险和效率因子;乘员个性化舒适性辨识率高达93.9%。本研究可为搭建考虑乘员舒适性的个性化轨迹规划控制算法提供理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号