首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《JSAE Review》1995,16(3):233-238
This study investigated the behavior of the OH (characteristic spectrum of 306.4 nm), CH (431.5 nm) and C2 (516.5 nm) radicals that are intermediate products of combustion and preflame reactions. Spectroscopic measurements were made of the absorption behavior of the radicals in the end and center zones of the combustion chamber of a spark-ignition engine. Two types of test fuels were used, iso-octane (100 RON) and n-heptane (0 RON). The results showed that the behavior of the OH, CH and C2 radicals in preflame reactions differed depending on the octane number of the fuels and between normal and abnormal combustion.  相似文献   

2.
《JSAE Review》1998,19(4):319-327
This study aimed to reduce NOx and soot by creating a more homogeneous lean fuel distribution in a diesel spray using high-pressure fuel injection and a micro-hole nozzle. This injection system shortened the ignition delay, but a homogeneous lean fuel distribution in the diesel spray was not achieved. Using a lower cetane number fuel, the resulting longer ignition delay made a uniform, lean fuel distribution in the diesel spray possible with this injection system. Ignition and combustion were analyzed by the combustion chamber pressure history, and flame temperatures and KL values were analyzed by the two-color method.  相似文献   

3.
The Homogeneous Charge Compression Ignition (HCCI) engine has attracted much interest because it can simultaneously achieve high efficiency and low emissions. However, the ignition timing is difficult to control because this engine has no physical ignition mechanism. In addition, combustion proceeds very rapidly because the premixed mixture ignites simultaneously at multiple locations in the cylinder, making it difficult to increase the operating load. In this study, an HCCI engine was operated using blended test fuels comprised of dimethyl ether (DME) and methane, each of which have different ignition characteristics. The effects of mixing ratios and absolute quantities of the two types of fuel on the ignition timing and rapidity of combustion were investigated. Cool flame reaction behavior, which significantly influences the ignition, was also analyzed in detail on the basis of in-cylinder spectroscopic measurements. The experimental results revealed that within the range of the experimental conditions used in this study, the quantity of DME supplied substantially influenced the ignition timing, whereas there was little observed effect from the quantity of methane supplied. Spectroscopic measurements of the behavior of a substance corresponding to HCHO also indicated that the quantity of DME supplied significantly influenced the cool flame behavior. However, the rapidity of combustion could not be controlled even by varying the mixing ratios of DME and methane. It was made clear that changes in the ignition timing substantially influence the rapidity of combustion.  相似文献   

4.
In this study, a 3-D CFD simulation and laser diagnostics were developed to understand the characteristics of soot generation in a diesel diffusion flame. The recently developed RANS (Reynolds-averaged Navier-Stokes equations) hybrid combustion model (Extended Coherent Flame Model — 3 Zones, ECFM-3Z model) was used. This industrial, state-ofthe-art model of the diffusion flame is commonly used in diesel combustion models as well as for propagating (premixed) flame combustion. The simulation results were validated with measurements from a constant volume combustion chamber. The experiment revealed that soot accumulated in the chamber where the temperature decreased. Where the temperature increased rapidly, only a little soot accumulated. The temperature and soot distribution were independently examined using both the two-color method and a 3-D CFD simulation for a turbulent diesel diffusion flame.  相似文献   

5.
《JSAE Review》2002,23(1):3-8
By either multiple direct injections coupled with an individual ignition or multiple ignitions in a premixed charge, the combustion process can positively be changed. The experimental results show that the heat release rate is changed widely depending on the flame ignition timing, and the possibility to bring about a preferable combustion could be shown. Numerical simulations of the cycle performance are carried out using a specially developed numerical simulator, involving the multi-zone combustion models. The results of the calculation using the multi-zone model show that a significant amount of NOx appears in the zone formed in the early combustion stage.  相似文献   

6.
介绍了天然气发动机激光点火的基本工作原理、基本过程、不同的引燃点火方式以及影响激光点火的3个特性参数(气体不均一指数、水的吸光度、火焰发射);对激光点火系统与传统的火花塞点火系统在天然气发动机燃烧和排放性能方面进行了燃烧持续期、失火极限、敲缸极限、NOx排放等参数的比较;总结了激光点火的优缺点及其在天然气发动机中的应用前景。  相似文献   

7.
Experimental and numerical analyses of laminar diffusion flames were performed to identify the effect of fuel mixing on soot formation in a counterflow burner. In this experiment, the volume fraction, number density, and particle size of soot were investigated using light extinction/scattering systems. The experimental results showed that the synergistic effect of an ethylene-propane flame is appreciable. Numerical simulations showed that the benzene (C6H6) concentration in mixture flames was higher than in ethylene-base flames because of the increase in the concentration of propargyl radicals. Methyl radicals were found to play an important role in the formation of propargyl, and the recombination of propargyl with benzene was found to lead to an increase in the number density for cases exhibiting synergistic effects. These results imply that methyl radicals play an important role in soot formation, particularly with regard to the number density.  相似文献   

8.
This study summarizes engine speed and load effects on HC species emissions from premixed charge compression ignition (PCI) and conventional diesel combustion, and it evaluates diesel oxidation catalyst (DOC) formulations on a gas flow reactor for the purpose of diesel particulate filter regeneration or lean NOx trap desulfation. HC emissions are sampled simultaneously by a Tedlar bag for light HC species and by a Tenax TA™ adsorption trap for semi-volatile HC species, and they are analyzed by gas chromatography with a flame ionization detector. The bulk temperature and residence time during combustion are key parameters that are important for understanding the effects of speed and load on engine-out HC emissions. The degree of post-flame oxidation is higher in PCI than in conventional combustion, and it is increased for PCI with a higher speed and load, as indicated by a lower fuel alkanes/THC ratio, a higher alkenes/fuel alkanes ratio, and a higher methane/THC ratio. Ethene and n-undecane are two representative HC species, and they are used as a surrogate mixture in the gas flow reactor to simulate PCI and conventional combustion with in-cylinder post fuel injection. Among the three DOC formulations tested, the catalyst with constituent precious metals of platinum and palladium (PtPd) showed the best light-off performance, followed by PtPd with an addition of cerium dioxide (PtPd+CeO2), and platinum (Pt), regardless of exhaust compositions. Conventional combustion exhaust composition shows a lower light-off temperature than that of PCI, regardless of catalyst formulation.  相似文献   

9.
《JSAE Review》2002,23(3):297-302
In recent DI diesel engines designed to achieve high output and meet future exhaust regulation, the pilot injection control using a common-rail injection system is adopted. In this research, we developed visualization equipment for pilot combustion behavior of non-luminous flame to clarify the influence of pilot injection parameters (timing and quantity) on engine performance. As a result of this analysis, we clarified the influence of pilot injection parameters on pilot-main combustion and found the optimum pilot injection controlling method.  相似文献   

10.
In this paper, the influence of injection parameters on the transition from Premixed Charge Combustion Ignition (PCCI) combustion to conventional diesel combustion was investigated in an optically accessible High-Speed Direct-Injection (HSDI) diesel engine using multiple injection strategies. The heat release characteristics were analyzed using incylinder pressure for different operating conditions. The whole cycle combustion process was visualized with a high-speed video camera by simultaneously capturing the natural flame luminosity from both the bottom of the optical piston and the side window, showing the three dimensional combustion structure within the combustion chamber. Eight operating conditions were selected to address the influences of injection pressure, injection timing, and fuel quantity of the first injection on the development of second injection combustion. For some cases with early first injection timing and a small fuel quantity, no liquid fuel is found when luminous flame points appear, which shows that premixed combustion occurs for these cases. However, with the increase of first injection fuel quantity and retardation of the first injection timing, the combustion mode transitions from PCCI combustion to diffusion flame combustion, with liquid fuel being injected into the hot flame. The observed combustion phenomena are mainly determined by the ambient temperature and pressure at the start of the second injection event. The start-of-injection ambient conditions are greatly influenced by the first injection timing, fuel quantity, and injection pressure. Small fuel quantity and early injection timing of the first injection event and high injection pressure are preferable for low sooting combustion.  相似文献   

11.
The rotary Atkinson cycle engine includes two modes of combustion: combustion initiation and propagation in ignition chamber and then flame jet entrainment and propagation in expansion chamber. The turbulent flame propagation model is a predictive model for SI engines which could be developed for this type of combustion for the rotary Atkinson engine similar to the congenital engine with pre-chamber; in split combustion chamber SI engines, small amount of fuel is burned in pre-chamber while the fuel burned in ignition chamber of rotary Atkinson cycle is considerable. In this study a mathematical modeling of spherical flame propagation inside ignition chamber and new combined conical flame and spherical flame propagation model of a new two-stroke Atkinson cycle SI engine will be presented. The mathematical modeling is carried out using two-zone combustion analysis and the model also is validated against experimental tests and compared with previous study using non-predictive Weibe function model.  相似文献   

12.
This paper investigates the effects of Hydrotreated vegetable oil-diesel blend to combustion characteristics under various ambient oxygen concentrations and ambient pressure. Combustion characteristics were investigated using heat release rate analysis, two color method, soot concentration measurement and NOx concentration measurement. The experiments were carried out on a rapid compression expansion machine to simulate the ambient condition of a CI engine at TDC. Synthetic gas with oxygen concentrations of 21 %, 15 % and 10 % were used to simulate EGR conditions. A single hole injector was used with five different fuels: commercial diesel, HVO-commercial diesel blends and HVO. The results showed that increasing HVO blending percentages decreased ignition delay, flame temperature, soot concentration and NOx concentration. Heat release at oxygen concentration of 10 % dramatically dropped due to a shortened ignition delay, which resulted in less combustion. A decreased oxygen concentration from applied EGR conditions not only increased ignition delay, heat release, flame temperature and NOx concentration, but also increased soot concentration. A combination of EGR and supercharged conditions by increasing ambient pressure and decreasing oxygen concentrations resulted in increased heat release, decreased flame temperature, ignition delay and soot concentration, compared to EGR conditions.  相似文献   

13.
《JSAE Review》1997,18(1):11-17
A numerical combustion model was developed for an engine CFD code in spark ignition engine combustion chambers. The combustion model features the following new concepts: (1) The introduction of preheated reactants which are produced in the turbulent mixing process and consumed in the reaction process; (2) the modification of the probability of burned and unburned gas blobs meeting each other in consideration of a change in turbulence length scale, which becomes smaller in the near wall region. With the first concept, the model deals with turbulence-reaction controlled combustion in the near wall region as well as turbulence-controlled combustion in the core region. The second concept avoids the unrealistic flame shape due to the near wall acceleration of the turbulent flame propagation, which is inherently seen in combustion models based simply on the turbulent mixing time such as the Magnussen model. It is also shown that the present model gives more realistic local heat fluxes.  相似文献   

14.
In this paper, flame front propagation during normal and abnormal combustion was investigated. Cycle-resolved flame emission imaging was applied in the combustion chamber of a port fuel injection-boosted spark ignition engine. The engine was fueled with a mixture of 90% iso-octane and 10% n-heptane by volume (Primary Reference Fuel 90: PRF90) and commercial gasoline. The combustion process was monitored from the flame kernel formation until the exhaust valves opened. Different phenomena associated with abnormal combustion were analyzed, including the fuel deposition burning. Moreover, the ignition surfaces and end-gas auto-ignitions were investigated in terms of timing, location and frequency of occurrence. The analysis was performed by considering different knocking intensities for both the selected fuels.  相似文献   

15.
Fast and predictive simulation tools are prerequisites for pursuing simulation based engine control development. A particularly attractive tradeoff between speed and fidelity is achieved with a co-simulation approach that marries a commercial gas dynamic code WAVE™ with an in-house quasi-dimensional combustion model. Gas dynamics are critical for predicting the effect of wave action in intake and exhaust systems, while the quasi-D turbulent flame entrainment model provides sensitivity to variations of composition and turbulence in the cylinder. This paper proposes a calibration procedure for such a tool that maximizes its range of validity and therefore achieves a fully predictive combustion model for the analysis of a high degree of freedom (HDOF) engines. Inclusion of a charge motion control device in the intake runner presented a particular challenge, since anything altering the flow upstream of the intake valve remains “invisible” to the zero-D turbulence model applied to the cylinder control volume. The solution is based on the use of turbulence multiplier and scheduling of its value. Consequently, proposed calibration procedure considers two scalar variables (dissipation constant C β and turbulence multiplier C M ), and the refinements of flame front area maps to capture details of the spark-plug design, i.e. the actual distance between the spark and the surface of the cylinder head. The procedure is demonstrated using an SI engine system with dual-independent cam phasing and charge motion control valves (CMCV) in the intake runner. A limited number of iterations led to convergence, thanks to a small number of adjustable constants. After calibrating constants at the reference operating point, the predictions are validated for a range of engine speeds, loads and residual fractions.  相似文献   

16.
The concept of Low Temperature Combustion (LTC) has been advancing rapidly because it may reduce emissions of NOx and soot simultaneously. Various LTC regimes that yield specific emissions have been investigated by a great number of experiments. To accelerate the evaluation of the spray combustion characteristics of LTC, to identify the soot formation threshold in LTC, and to implement the LTC concept in real diesel engines, LTC is modeled and simulated. However, since the physics of LTC is rather complex, it has been a challenge to precisely compute LTC regimes by applying the available diesel combustion models and considering all spatial and temporal characteristics as well as local properties of LTC. In this paper, LTC regimes in a constant-volume chamber with n-Heptane fuel were simulated using the ECFM3Z model implemented in a commercial STAR-CD code. The simulations were performed for different ambient gas O2 concentrations, ambient gas temperatures and injection pressures. The simulation results showed very good agreement with available experimental data, including similar trends in autoignition and flame evolution. In the selected range of ambient temperatures and O2 concentrations, soot and NOx emissions were simultaneously reduced.  相似文献   

17.
用光学可视化方法研究乙醇柴油混合燃料的燃烧特征   总被引:2,自引:0,他引:2  
应用直接图像法对乙醇柴油的燃烧过程进行研究。在一台单缸直接喷射式柴油机上,建立了直接图像法拍摄燃烧火焰图像的光学系统,对15%乙醇柴油、15%乙醇柴油加十六烷值改进剂、纯柴油在同一转速下的燃烧过程进行可视化研究。对火焰照片分析表明:柴油中加入乙醇后,无论是否恢复其十六烷值,其着火滞燃期都延长了,燃烧持续期缩短,火焰辉度减弱。在乙醇柴油中加入十六烷值改进剂后,着火滞燃期相对提前,燃烧持续期和火焰辉度增加,但仍然没有达到柴油机水平,这说明十六烷值改进剂有利于改善乙醇柴油的燃烧性能。通过温度场分析发现:乙醇柴油的缸内平均温度峰值要比纯柴油低很多,而且乙醇柴油燃烧时平均温度上升相当平缓。  相似文献   

18.
缸内直喷式汽油机工作过程三维数值模拟   总被引:2,自引:0,他引:2  
将一台柴油机改装为缸内直喷式汽油机,采用KIVA-Ⅱ软件时缸内直喷式汽油机的两个典型工况(分层燃烧和均质预混合燃烧)的燃烧过程进行了三维数值模拟。计算结果表明,采用分层燃烧和均质预混合燃烧具有不同的火焰传播方式和特点。  相似文献   

19.
基于Atkinson理论循环建立混合动力汽油机的性能仿真模型,确定出合适的压缩比与配气正时。分别采用增加活塞顶面凸起高度(上凸型燃烧室)和减小缸盖上燃烧室高度的方式来满足Atkinson循环汽油机对压缩比的要求。同时为适应紧凑结构减小气门升程、直径(紧凑型燃烧室)。通过三维CFD计算分析,比较了两种燃烧室缸内燃烧及流动特性,发现紧凑型燃烧室能够在火核形成及扩散时期在缸内产生更高的湍动能,有利于加快火焰传播,使燃烧持续期缩短9.8%~24.4%,可显著提高燃油经济性。在混合动力用Atkinson循环发动机开发中使用紧凑型燃烧室,具有重要的应用价值。  相似文献   

20.
车用燃油加热器燃烧性能的试验研究   总被引:9,自引:0,他引:9  
毛华永  李国祥  王伟  胡云萍  潘世艳 《汽车工程》2006,28(12):1136-1138,1132
对车用燃油加热器燃烧室进气孔径(流通面积)、孔的分布、孔的方向等几何参数和进排气压力对加热器燃烧性能的影响进行了试验研究。研究表明,燃烧室进气孔的孔径、孔数、孔的分布及方向等均对燃烧性能影响很大;斜孔所产生的旋转进气,虽具有强化燃气混合、消除死区和回流稳焰的作用,但回流过度会使燃烧室及排温过高;保证进排气系统流动阻力(压力)的一致性,有助于保证加热器性能稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号