首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
路基的沉降过程非常复杂,常规的一维固结理论不可能考虑到影响和制约路基沉降的所有因素,因此计算得到的路基沉降值往往与实测值有很大差距,而高速铁路对路基沉降的控制要求极其严格。基于京沪高铁济南西客站桩-筏复合地基的实测沉降值,运用灰色系统理论分析桩-筏复合地基的沉降变化过程,寻求一种适合大面积堆载情况下桩-筏复合地基沉降的分析方法,为我国高速铁路车站站场基础的建设提供科学的依据。  相似文献   

2.
介绍了武广铁路客运专线路基典型断面变形、应力监测方案,对CFG桩复合地基中桩身压缩量、不同深度范围内桩间土压缩量的监测结果进行整理分析,探讨了路基填筑、停载、超载预压、超载卸除等施工过程中CFG桩复合地基的变形发展规律。现场实测结果表明:在施工过程中,CFG桩复合地基中的桩、土变形并不协调,其变形差随着复合地基中应力不断调整而逐步减小;基于复合地基压缩变形的93.4%发生在CFG桩加固深度内,准确计算加固区沉降是提高复合地基沉降计算精度的关键。  相似文献   

3.
研究目的:高速列车运营荷载作用将导致复合结构路基产生沉降。由于高铁对路基沉降要求高,复合结构路基的荷载传递和沉降变形规律值得工程界关注。为研究高铁复合结构路基荷载传递以及沉降变形规律的影响因素,本文建立高速铁路复合结构软土路基三维有限元分析模型,将高速铁路列车运行荷载简化为均布荷载作用于轨道板以下的路堤顶面,分析桩长、桩间土模量和下卧层模量对桩身轴力分布、桩土应力比以及路基沉降的影响规律。研究结论:(1)桩身轴力随桩长增加而增大,路基沉降则明显减小;在不同桩长下,桩土应力比沿桩身距离路基中心水平方向位置的变化均表现为先增大再减小的趋势,10 m、12.5 m、15 m和20 m桩长下桩土应力比稳定值分别为6.8、10、13和17;(2)桩身轴力随桩间土模量增大而减小;在不同桩间土模量下,桩土应力比随桩身距路基中心水平位置的偏移先稳定后增大再减小,10 MPa、30 MPa和50 MPa桩间土模量下桩土应力比分别为30、12和7;(3)下卧层模量增大使桩端摩阻力增大,桩身中性点位置向下偏移;桩土应力比随水平位置偏移的变化规律同样是先增大后减小,下卧层模量增大能使桩的沉降明显减小,但对路基总沉降影响不大;(4)该研究结论可为高铁复合结构路基及类似工程设计和施工提供理论参考。  相似文献   

4.
京沪高速铁路CFG桩-筏复合地基现场试验研究   总被引:2,自引:0,他引:2  
结合京沪高速铁路凤阳试验段工程,开展CFG桩+垫层+筏板处理地基试验。实测桩-筏复合地基沉降变形、桩顶应力、桩间土应力、筏板顶面土应力、钢筋应力及桩身应变;分析路基沉降变形、桩土应力比随填筑高度和固结时间的变化规律;获得地基面桩土应力分布、筏板顶面土应力分布、钢筋应力分布、桩身轴力和侧摩阻力分布;研究路堤荷载作用下CFG桩-筏复合地基的工作性状。研究成果有助于高速铁路桩-筏复合地基沉降控制、承载特性和应力传递机理的研究,并为京沪高速铁路及其它相关工程的桩-筏复合地基设计方法提供数据支持。  相似文献   

5.
CFG桩复合地基广泛应用于工民建和公路工程中,在高速铁路中的应用与研究相对较少.依托京沪高速铁路路基工程,比选CFG桩复合地基不同设计方案,结合现场试验,研究CFG桩复合地基沉降控制效果及工程投资情况,进而得出在试验段地层条件下,满足高速铁路路基沉降要求,技术可靠、经济合理的CFG桩复合地基设计方案.  相似文献   

6.
张宽  潘强  王振 《铁道建筑》2012,(8):78-81
哈大客运专线新营口站修建于东部沿海深厚软土地层中,对路基沉降控制极其严格,因此,对CFG桩结合MIP桩处理的复合地基沉降特性进行研究,对路基沉降控制有着重要的现实意义。选择新营口站为试验段,布置液位沉降计、单点沉降计及剖面沉降管综合测试复合地基的沉降。试验结果表明:各阶段的沉降,路基中心线处最大,右线中心线处次之,右路肩线处最小。通过钢筋混凝土板的刚性调节作用,桩土沉降差较小。路基沉降主要发生在路基填筑和堆载预压期间,复合地基的沉降主要来自下卧层的压缩量。深厚软土地层中采用CFG桩结合MIP桩处理后地基的工后沉降值<15 mm,满足客运专线沉降控制要求。  相似文献   

7.
研究目的:哈大高速铁路新营口车站路堤位于厚度超过55 m的滨海相沉积地基上,没有较硬土层可作为CFG桩持力层,地基承载特性和变形特性对高速铁路路基工程极为不利.为了确保路基沉降能够满足规范要求,哈大高速铁路首次采用CFC桩(长桩)+水泥搅拌桩(短桩)+垫层+钢筋混凝土板的新型复合结构进行地基处理,并对该复合结构的受力和沉降变形进行的实测和分析.研究结论:在该新型复合结构中,CFG桩承担了路基填土的主要荷载,MIP桩承担了部分路基填土荷载,桩间土承担了小部分路基填土荷载,三者共司受力,满足了路基结构受力,符合复合地基的设计理念;该新型复合结构控制了地基的总沉降量和不均匀性沉降,同时使地基的沉降能够尽快完成,保证了工后沉降满足规范要求,确保高速铁路运营期间的稳定.研究结论对于优化全线软土地基设计和指导施工具有重要意义,也为今后我国同类型的高速铁路设计与施工提供有益的参考和借鉴.  相似文献   

8.
长短桩复合地基应力与沉降分析   总被引:1,自引:0,他引:1  
利用三维有限元对长短桩复合地基进行对比分析,给出全长桩、全短桩、长短桩、无垫层、天然地基5种方案下的桩身应力与土体附加应力分布,并探讨垫层模量和厚度对承台沉降的影响和对应力的调节作用。研究结果表明:复合地基能有效减少天然地基沉降和改善浅层土的应力状态,复合地基中桩身应力与土体附加应力按刚度分配,桩侧土应力与桩身应力表现出互补的特性。而垫层使桩与桩、桩与土之间应力分配趋于合理,垫层模量对承台沉降影响显著;随着垫层模量增加,长桩桩顶应力增加,短桩桩顶应力和桩身应力及土体表面应力降低;随着垫层厚度的增加,变化趋势则相反。  相似文献   

9.
从研究CFG桩复合地基的沉降出发,应用PLAXIS二维有限元分析软件对新建铁路曲阜站路基沉降进行了分析,比较了用带桩帽和带筏板的CFG桩加固地基后对地基沉降的影响。分析表明,两种CFG桩复合地基的最终沉降相差较小,均能满足设计要求。带筏板和带桩帽的CFG桩复合地基在坡脚处的水平位移变化较小,表明施工过程中路基边坡是稳定的。用带桩帽的CFG桩代替带筏板的CFG桩加固软土地基在技术上是可行的,在经济上是合理的。  相似文献   

10.
对京沪高速铁路济南西客站PHC管桩和CFG桩联合堆载预压处理宽站场复合地基的沉降特性开展试验研究,监测不同宽度、不同桩型和桩长复合地基的地表沉降及分层沉降,分析沉降变形随路堤填筑高度和时间的变化规律,研究路基宽度对沉降量和沉降曲线形状的影响。研究结果表明:站场路基沉降-时间曲线包含沉降发展阶段(路基填筑阶段)、沉降快速发展阶段(堆载预压土至2~3个月静置期)和沉降基本稳定阶段;宽大站场PHC管桩及CFG桩复合地基在中心区附近呈现沉降洼地,而在中央区沉降洼地的两侧出现次一级沉降洼地;宽大站场PHC管桩及CFG桩复合地基附加应力较大,衰减速度慢,沉降影响深度大,30~50m以下的地基沉降量约占总沉降的75%~85%,加固区范围内沉降量占总沉降的5%~10%。  相似文献   

11.
张然 《铁道建筑》2020,(2):91-94
依托宝兰客运专线路基的地基处理工程,研究深厚层强湿陷性黄土地基处理新技术。对刚柔性组合桩复合地基在湿陷性黄土地区的应用进行深入研究,首次提出了地基处理设计中工后沉降的计算方法。研究结果表明:在深厚层湿陷性黄土地基处理时,柔性短桩长度宜控制在5~10 m;当路基荷载超过200 kPa(路基填高超过8 m)时,应适当增加刚性桩的桩土应力比值,以提高刚性桩荷载分担比,充分发挥长桩的作用。宝兰客运专线自开通运营以来,刚柔性组合桩复合地基段路基状况良好,列车运行平稳。  相似文献   

12.
采用非线性有限元分析方法,建立加筋碎石桩群桩性能分析模型,通过模型试验从复合地基沉降和加筋体应变2方面验证了所建模型的可靠性,计算分析不同因素对地基与桩顶沉降的影响。通过单桩与群桩沉降间的关系构建了考虑群桩效应的地基沉降比计算方法。研究结果表明:竖向荷载作用下加筋碎石桩复合地基存在明显群桩效应,在加固区桩间距对群桩性能的影响显著,但对桩端土体影响不大;不同桩土模量比下中心桩桩顶沉降随荷载的变化趋势一致;同一上部荷载下加筋碎石桩能有效减少地基沉降,但当加筋体刚度大于500 kN/m时增加加筋体刚度不能有效减少加筋碎石桩复合地基沉降;桩间距与桩径比在2~4内变化时,群桩和单桩沉降比随着桩土模量比的增加呈抛物线形下降,群桩和单桩沉降比变化范围约在0.6~2.0,且桩间距与桩径比越小时群桩和单桩沉降比变化幅度越大;桩间距与桩径比在5~6内变化时,群桩和单桩沉降比几乎没有变化。  相似文献   

13.
研究目的:附加应力是路基地基沉降分析中非常重要的参数,附加应力计算方法不同,计算结果差异较大。本次研究拟通过现场测试了解桩筏基础路基地基应力分布规律。研究结论:(1)桩筏基础路基地基实际应力小于计算值是沉降计算误差产生的原因之一;(2)桩筏基础路基地基加固存在临界桩长;(3)地下水位以下土层自重应力计算采用浮容重是合理的。  相似文献   

14.
通过对地基的分层沉降、超孔压、侧向变形及土压力现场测试,研究了CFG桩在桩顶和筏板之间设置15 cm厚碎石褥垫层进行高速铁路路基深厚松软土地基工后沉降控制的地基受力、变形规律。测试结果表明桩间土的压缩发生在桩长下部的一定范围之内;摩擦桩桩端会产生进入下卧层的刺入沉降;没有连通有效排水通道的深层透镜体砂层中的超孔压消散规律与邻近的黏土层是一致的,不能作为透水层;桩向下刺入下卧层,桩端附近的土体中产生较高的超孔压,在深层没有排水面时,此超孔压会向浅层的地层消散,从而会引起浅层地基土的超孔压也经历一个先增长后消散的变化过程。地基的侧向变形微乎其微及桩土应力比都表明这样的结构很类似桩基础。  相似文献   

15.
高速铁路无砟轨道路基沉降监测和研究   总被引:3,自引:0,他引:3  
研究目的:高速铁路对路基工程工后沉降控制十分严格,路基工程工后沉降主要为铁路铺轨完成后地基的残余沉降。石家庄—武汉高速铁路设计标准为时速350 km,全线无砟轨道。为研究地基加固措施的科学性,在建设过程中,选取代表性试验工点对复合地基沉降进行监测和研究。研究结论:采用桩+板结构和CFG桩复合地基联合堆载预压措施加固深厚松软土地基,施工期沉降约占最终总沉降的72%~85%,有效地控制了路基工后沉降,整个区段内纵向沉降较为均匀,符合区段路基铺设无砟轨道要求,加固措施有效可行。  相似文献   

16.
时洪斌 《铁道建筑技术》2021,(3):140-145,183
针对18 m以上深长双向搅拌桩复合地基加固海相软土地区铁路路基的长期加固效果问题,依托新建青连铁路连盐试验段进行了现场试验研究。通过施工期的工艺优化和成桩质量控制,填筑期的荷载传递规律分析,以及贯穿施工期到运营期的长期沉降观测,验证了深长双向搅拌桩复合地基加固的长期可靠性。结果表明:干法和湿法双向搅拌桩加固苏北地区含水量在37%~55%之间的海相深厚软土地层具有可行性,试验桩长20 m范围内成桩质量良好;从施工期到运营期的路基沉降控制效果良好,满足规范对沉降的要求。试验研究成果拓展了双向搅拌桩的适用范围,在加固深度方面突破了现行规范规定的干法桩不宜大于15 m、湿法桩不宜大于18 m的限制,并且具有较好的经济效益和社会效益。  相似文献   

17.
研究目的:通过对遂渝铁路复合地基设计计算数据与现场施工实测数据的对比分析,明确200 km/h铁路地基处理主要受沉降控制而非稳定控制,找出理论计算值与现场实测值的关系,为以后客运专线地基处理设计积累经验。研究方法:以粉喷桩和碎石桩复合地基加固为例,通过理论计算与实测数据的对比分析,用现场实测数据来修正我们的理论设计,以完善我们的理论计算。研究结论:遂渝铁路采用粉喷桩和碎石桩加固处理软粘土地基是可行的、经济合理的;在进行200 km/h铁路及速度目标值更高的客运专线复合地基设计时,应以沉降控制为主,稳定性控制次之;粉喷桩和碎石桩等复合地基路堤的总沉降以施工期的地基沉降为主,工后沉降同样以地基沉降为主,工后沉降速率最大的是路堤竣工后前半年左右,之后趋于缓和。  相似文献   

18.
在湿陷性黄土铁路路基试验段,运用大型原位浸水试验,研究路基浸水后柱锤冲扩桩和挤密桩地基的浸水规律以及地基土湿陷对路基沉降的影响.研究结果表明:柱锤冲扩桩和挤密桩地基分别在浸水60和50d时,浸水附加沉降发生突变;浸水约19 d浸润角达到最大,因此路基坡脚附近因降雨或其他原因形成的积水滞留时间不应超过19 d;浸水87 d柱锤冲扩桩路堤的沉降量为1.7~5.1 mm,挤密桩为26.2~51.3 mm;长时间持续浸水后柱锤冲扩桩路堤的总沉降量仅为3.8~7.4 mm,而挤密桩路堤的总沉降量则高达62.3~103.1mm,因此在实际工程中,一定要加强挤密桩路段的防排水措施,避免局部积水,以保证行车安全;未处理湿陷性黄土地基的浸润角为38°~42°,故建议在湿陷性黄土地区修建铁路时,距路基坡脚一定范围内不能有鱼塘、水池等长期积水设施.  相似文献   

19.
预应力管桩在温福铁路软土路基中的设计与应用   总被引:1,自引:0,他引:1  
研究目的:以具体工程为背景,介绍预应力管桩在时速200 km客货共线铁路路基中的首次应用及柔性基础条件下复合桩基的设计方法。研究结果:将预应力管桩技术首次应用到沿海铁路深厚层软土路基加固工程中来,管桩施工快捷,质量可靠,加载期间路堤稳定,沉降量小。管桩静载试验及现场测试表明,桩网结构受力模式符合预见,原设计中管桩设计理念合理。  相似文献   

20.
以大西客运专线为研究背景,基于动力有限元数值模拟和正交试验设计,研究了地下水位差异和不同地基条件下跨地裂缝带高铁路基的动力响应及CFG桩对地基加固效果的影响,结果表明:路基动应力和加速度响应在地裂缝带处出现较大波动,路堤中动应力沿深度方向衰减近50%,加速度衰减近70%;上、下盘地下水位差导致地基动应力和加速度幅值出现明显差异;CFG桩降低了路堤加速度和路基下部动应力,且动应力降低幅度要大于加速度;对于动应力,桩间距的影响最大,桩长次之,桩径最小;对于加速度,桩间距的影响最大,桩径次之,桩长最小;地基优化加固方案为:上盘桩间距1. 2 m,桩长8. 0 m,桩径0. 3 m;下盘桩间距1. 2 m,桩长16 m,桩径0. 6 m。研究结果可为跨地裂缝带高铁路基设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号