首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为确保时速400 km下列车安全平稳运行,车辆部件正常使用,以车辆-轨道耦合动力学为理论基础,将车轮多边形磨耗考虑为轨道不平顺激励,针对单阶主导的车轮多边形形式,分析了车轮多边形阶数、幅值对车辆-轨道动态相互作用的影响规律;基于轮轨垂向力170 kN的限值要求,给出了时速400 km行车条件下车轮多边形阶数、幅值组合的安全限值。结果表明:随着车轮多边形阶数增加,轮轨垂向力逐渐出现高频波动,且阶数越高,波动频次越高,波动幅值越大;车轮多边形幅值越大,对轮轨动态相互作用的影响越明显;相比无多边形的正常车轮工况,轮对垂向振动加速度增幅总体上随车轮多边形阶数增大而增大;车轮多边形对车体和构架影响不大。  相似文献   

2.
车轮多边形磨耗和钢轨波磨磨耗普遍存在于服役列车和典型线路上,针对这2种磨耗形式下的轮轨力学特性开展研究.建立柔性轮对的CRH3型高速列车刚柔耦合模型,构建车轮多边形与钢轨波磨的数学模型,分析200~350 km/h速度级下,波深、幅值均为0.01~0.04 mm,20~24阶车轮多边形磨耗与120~150 mm波长的钢轨波磨磨耗下对轮轨力的影响.研究结果表明:不同速度级下,车轮多边形阶次为20阶时,轮轨垂向力随着速度的增加而增大;改变车轮多边形的阶数、幅值,轮轨垂向力的大小随着多边形的阶次、幅值增大而增大;在考虑通过钢轨波磨区段的车轮多边形磨耗影响下,轮轨垂向力会出现明显的拍振现象,并且出现2个主频;当多边形阶次增加,轮轨垂向力的大小有所增大,但随着钢轨波磨波长的增加呈减小的趋势;当列车运行速度为300 km/h,车轮多边形幅值达到0.04 mm,车轮多边形阶数大于20阶,需要及时对车轮或钢轨进行镟修打磨工作,建议车轮多边形阶数为22阶、23阶、24阶分别对应钢轨波磨波深限值为0.04,0.03和0.024 mm.  相似文献   

3.
基于弹性轮对建立车轮多边形的刚柔耦合整车动力学模型。首先分析弹性车轮的合理性,进而通过修改命令直接形成多边形,研究弹性车轮多边形的波深、相位差、谐波阶数在不同速度下对车辆动力学性能的影响,给出4080 km/h下,车轴横向力、轮轨横向力、脱轨系数、轮重减载率等重要指标,确定出危险速度。结果表明,3个参数对动力学性能的影响存在差异,但对脱轨系数影响都很小,对60 km/h速度下的轮重减载率影响都很大,应尽量避免在60 km/h下长期运行,以免发生共振。  相似文献   

4.
为探究车轮多边形磨耗对车桥耦合系统振动响应的影响规律,采用ANSYS和SIMPACK联合仿真方法,以国内某高速列车和铁路简支梁桥为原型,建立车桥耦合振动分析模型,把轨道不平顺和车轮多边形磨耗作为系统的输入激励,对车桥耦合系统的振动特性展开研究。结果表明:车轮多边形磨耗对车桥耦合系统的振动响应影响显著;3阶车轮多边形磨耗使轮重减载率增大67.7%,严重降低了列车行驶的安全性,也使桥梁跨中横、竖向加速度分别增大2.74倍和2.27倍;车桥耦合振动响应随着车轮多边形磨耗幅值、阶数的增大而增大,当车轮多边形磨耗幅值由0.02 mm增大至0.08 mm时,列车轮重减载率、桥梁跨中横向和竖向加速度、钢轨中点横向和竖向加速度分别增加76.5%、174%和127%、47.3%和83.1%;当车轮多边形磨耗阶数由1阶增大至4阶时,列车轮重减载率、桥梁跨中竖向加速度、钢轨中点横向和竖向加速度分别增加116%、389%、82.0%和170%。特别地,列车以200 km/h速度运行时,3阶车轮多边形磨耗引发桥梁横向共振使得桥梁跨中横向加速度显著增大,是4阶车轮多边形磨耗作用时的2.74倍。  相似文献   

5.
列车车轮多边形磨耗会引起轮轨间作用力明显增大,对车辆和轨道部件产生恶劣的影响,严重时将会威胁到行车安全。本文以某城际高速列车在运行过程中发生转向架部件损坏事故为例,建立高速车辆-轨道耦合动力学模型和车轮多边形不平顺输入模型,计算分析列车运行速度、车轮多边形幅值及其阶数(或边数)等因素对轮轨垂向力的影响规律。结合现场高速车轮径跳的镟修期限统计和经验,以轮轨垂向动载荷限值为依据,考虑在不同速度下1~23阶车轮多边形幅值的影响,初步建立高速车轮多边形状态下的安全镟修限值。并通过分析安全限值曲线发现,当列车运行速度越快和车轮多边形阶次越高时,即使很小的车轮非圆化磨耗幅值也能导致轮轨力超出限值要求。本文结果可为高速列车车轮镟修维修工作提供参考和指导。  相似文献   

6.
为研究米轨机车车轮多边形化对机车系统动力学性能的影响,建立米轨机车动力学模型,研究车轮多边形的谐波阶数和波深幅值对动力学性能的影响,并计算不同谐波阶数下车轮多边形的波深限值,最后对车轮多边形和轨道激励共同作用下轮轨垂向力的变化趋势进行分析。结果表明:由于米轨机车运行速度较低,车轮多边形化会导致低频振动,使得车体振动响应增大;车轮多边形化会极大地增加轮轨垂向力,但对脱轨系数影响不大;波深限值与机车运行速度及车轮多边形谐波阶数成反比;轨道激励不仅不会掩盖多边形的作用趋势,而且会极大地增加轮轨垂向力。机车在线路上运行时应经常检测车轮不圆度,并及时镟修或者更换车轮,防止出现轮轨垂向力过大或跳轨现象。  相似文献   

7.
基于刚柔耦合动力学理论建立柔性轮对车辆-轨道刚柔耦合动力学模型,结合现场实测轴箱加速度验证了模型的可靠性。采用谐波叠加法模拟车轮多边形,对比了有无车轮多边形对轮对振动加速度的影响。在此基础上,分析了车轮多边形参数(如多边形阶次、幅值变化)对轮轨系统振动的影响。结果表明,车轮多边形将导致柔性轮对垂向加速度显著增大;与刚性轮对模型相比,柔性轮对及转向架的垂向加速度显著增大,此时多边形激振频率(674 Hz)成为影响其垂向振动的主要因素;轮对垂向加速度随多边形阶次的增加先增大再减小,当车轮多边形阶次为20阶时,轮对垂向加速度达到最大值;钢轨垂向加速度随多边形阶次的增加而增大;轮对垂向加速度、钢轨垂向加速度随多边形幅值的增大而增大。  相似文献   

8.
为研究高速列车车轮1~25阶多边形化对车辆动力学性能的影响,建立了整车动力学仿真模型。假设车轮型面不发生变化,车轮半径差沿圆周方向周期性变化,通过数值仿真研究列车高速运营状态下车轮多边形化的波深、谐波阶数对车辆动力学性能的影响。结果表明,车轮多边形化对车体平稳性指标、脱轨系数影响很小。车轮高阶不圆对临界速度、轮轨垂向力的影响远大于车轮低阶不圆的影响,车轮低阶不圆对构架、车体的垂向振动影响远大于车轮高阶不圆的影响。根据轮轨垂向力上限值170kN分析出在200、250、300、350km/h 4个速度等级时,分别对应10、15、20、25阶不圆顺波深限值。  相似文献   

9.
《机车电传动》2021,(4):26-33
为了研究车轮扁疤对高速列车轮轨接触蠕滑特性的影响,基于多体动力学理论和滚动接触简化理论,建立考虑轮对柔性的刚柔耦合车辆动力学模型,分析车轮扁疤参数变化对高速列车轮轨力和蠕滑力等特性的影响,并结合轮重减载率和轮轨垂向力指标得到车轮扁疤长度的安全限值。结果表明:考虑轮对柔性能更好地反映轮轨接触状态;在轮轨滚动接触过程中,车轮扁疤过长会导致轮对发生跳轨现象,严重时导致车辆脱轨,应及时根据扁疤长度限值镟修轮对;结合轮重减载率和轮轨垂向力制定车轮扁疤长度安全限值为27 mm,该限值可以更有效地保障高速列车安全运行。  相似文献   

10.
为研究车轮谐波磨耗对车辆运行安全性的影响,首先建立钢轨及路基振动的车辆-轨道-路基耦合大系统仿真模型,然后根据最常见的1阶、6阶和11阶谐波磨耗阶数以及波深0.1 mm、0.3 mm的6种典型谐波磨耗对轮重减载率、脱轨系数和轮轨横向力3个安全性指标的影响进行仿真分析研究,并依托相应铁路行业标准对研究结果进行对比分析。结果表明:车辆计算的最大脱轨系数处于安全限度内,不会发生脱轨;而最大轮重减载率超过评定限值0.8,存在安全风险,同时最大轮轨横向力值也接近国际安全极限值,有安全隐患。本研究有利于评估车轮谐波磨耗对高速行驶车辆的安全影响,为车辆安全运行提供理论依据。  相似文献   

11.
采用ANSYS有限元软件结合SIMPACK动力学软件建立基于Timoshenko梁的柔性轨和柔性轮模型的车辆—轨道耦合动力学模型,以典型的高阶车轮谐波磨耗(阶次为18~21阶,幅值为0.01~0.04mm)激扰作为系统的输入激励,对比分析在柔性轮柔性轨模型与刚性轮轨、柔性轮刚性轨和柔性轨刚性轮模型下高阶车轮谐波磨耗对高速轮轨系统振动响应的影响。结果表明:当车轮谐波磨耗激扰激发轮对固有模态引起共振时,基于柔性体模型计算出的振动响应幅值大于基于刚性体模型计算的结果,而当激扰频率远离共振模态频率时,基于刚性体模型计算的振动幅值大于基于柔性体模型计算的结果;总体上,轮轨垂向力、钢轨及轴箱振动加速度随着车轮谐波磨耗幅值、阶次及列车运行速度的增大而增大;在车辆速度300km·h-1、车轮多边形阶次为20时,车轮多边形幅值0.04mm激起的钢轨及轴箱振动加速度峰值约为幅值0.01mm下的2.5倍;当车轮多边形幅值固定、阶次由18阶增至21阶时,激起的钢轨振动加速度仅增大约1.6倍、轴箱振动加速度级增大约5.7dB,相较于多边形幅值而言,多边形阶次对轮轨系统振动响应的影响较小。  相似文献   

12.
为研究考虑柔性轮对旋转效应时车轮多边形磨耗对轮轨力的影响,结合有限元法和多体动力学理论,建立了带有车轮多边形磨耗的车辆轨道刚柔耦合动力学模型,编写了车辆轨道耦合动力学程序及欧拉坐标系下的柔性轮对计算程序,并在此基础上计算了刚性轮对、忽略旋转效应的柔性轮对和考虑旋转效应的柔性轮对存在多边形磨耗时的轮轨力,分析了多边形阶数、磨耗程度对轮轨力的影响。研究表明:在考虑柔性轮对旋转效应的车轮多边形磨耗影响下,轮轨力响应存在主频分离现象,对轮轨力的波动影响较明显;当列车运行速度为300 km/h,车轮多边形阶数为24~28阶时,轮轨垂向力出现了拍振现象且波动较大,相对于轨枕位置存在约0. 5π的相位超前;当多边形磨耗严重时,高阶多边形引起的2倍频能量上升,对轮轨力的波动幅值影响较大。  相似文献   

13.
通过MATLAB软件模拟平顶型不平顺,作为机车模型的外部激扰输入,根据机车动力学理论,以机车轮轨动力指标为依据,运用SIMPACK多体动力学仿真软件,分析了小跨度桥的局部平顶型不平顺的幅值A、与不平顺波长相关的系数K和平顶长度L对轮轨系统动力性能的影响,给出了80~160 km/h速度下,轮轨垂向力、轮重减载率等重要指标,确定出危险速度。仿真结果表明,平顶型不平顺的幅值A和不平顺的系数K的增大,对机车的轮轨垂向力最大值和轮重减载率最大值都有不同程度的影响;但平顶长度L对机车的轮轨垂向力最大值和轮重减载率最大值几乎没有影响。  相似文献   

14.
为深入研究轻轨车辆弹性车轮的动力学作用,基于压剪复合型弹性车轮的结构,在弹性车轮动力学传统模型的基础上,综合考虑弹性车轮轮芯相对于轮毂的6个自由度,建立弹性车轮动力学复合模型。利用多体动力学软件SIMPACK进行仿真计算,对比分析传统模型和复合模型下弹性车轮车辆以及刚性车轮车辆的临界速度、平稳性、曲线通过性能和轮轨磨耗等指标。结果表明:由于传统模型未考虑车轮与车轴之间的偏转刚度和轮对两车轮之间的扭转刚度,因此计算误差较大;采用复合模型得到的弹性车轮车辆的临界速度、运行平稳性指标,以及通过小半径曲线时的轮轨横向力、轮轴横向力、脱轨系数、轮重减载率等较刚性车轮车辆都有不同程度的降低;弹性车轮车辆的轮轨磨耗情况在直线通过时与刚性车轮车辆的相似,而曲线通过时相比刚性车轮车辆降低了约5.3%。  相似文献   

15.
针对我国高速铁路LMA,S1002CN,XP55这3种典型型面车轮与60,60N和60D这3种廓形钢轨匹配的情况,建立车辆—轨道耦合动力学模型,结合等效锥度、Polach指数、轮轨接触带宽变化率和接触点移动速率,分析新轮与新轨匹配和磨耗车轮的型面与钢轨原始廓形在服役条件下匹配的轮轨三维接触非线性关系,研究轮轨接触非线性关系对车辆动力学性能的影响。结果表明:S1002CN型面车轮时轮轨接触点跳跃最明显,LMA型面车轮时轮轨接触点分布最均匀,XP55型面车轮时轮轨接触带宽最窄,而且新轮与60N和60D钢轨匹配时轮轨接触点较60钢轨更集中在轨头中心处;S1002CN型面磨耗车轮与60钢轨匹配时脱轨系数、轮重减载率的相对增长率均大于与60N和60D钢轨匹配时;在1个镟修周期内,S1002CN型面车轮与3种廓形钢轨匹配时,随着运营里程的增加,滚动圆附近轮轨接触带宽和接触点移动速率均增大,且与60N和60D钢轨匹配时Polach指数由正值变为负值,影响车辆的蛇行失稳临界速度、失稳后的蛇行振动幅值以及车辆蛇行失稳极限环分岔特征。  相似文献   

16.
为了研究轮对扭转、弯曲和伞形特征模态对车辆曲线通过性能的影响,将轮对分别视为刚性体和弹性体,建立了车辆—轨道系统动力学模型。根据UIC518,采用轮轨垂向力、轮轴横向力、脱轨系数和轮重减载率评定车辆曲线通过性能。研究结果表明:轮对一阶弯曲模态对车辆曲线通过性能的影响最大,轮对模态特征频率降低使车辆曲线通过性能指标值增大。将轮对考虑为弹性体,轮对一阶扭转模态、一阶对称和反对称弯曲模态的特征频率分别为46 Hz、62 Hz和128 Hz时,导向轮对的轮轨垂向力、轮轴横向力、脱轨系数和轮重减载率与刚性轮对模型的结果的比值为1.010、1.167、1.241和1.033。轮对结构弹性对轮轴横向力和脱轨系数的影响较大。  相似文献   

17.
建立了车轮多边形化的车辆轨道刚柔耦合动力学模型,为了研究车轮多边形化对车辆动力学的影响,通过提取轮轨垂向力和轴箱垂向加速度动力学指标,发现车轮高阶多边形会在轮轨接触表面产生高频冲击载荷导致轮轨作用加剧,同时还会激发出轮对和轴箱的一些振动频率而使轴箱振动加强。根据轮轨垂向力限值标准,得到了不同速度下多边形的深度阈值。针对高速列车车轮多边形化的动态特征结合大量的跟踪监测,文中提出了车轮多边形在线诊断方法:通过轴箱垂向加速度频谱在线辨别多边形阶数,定义多边形车轮轴箱垂向加速度系数λ辨识多边形深度。在线诊断的车轮多边形结果与入库检测车轮多边形结果对比,验证了该方法的有效性。  相似文献   

18.
基于车辆系统动力学理论,通过MATLAB软件模拟局部指数衰减型动态不平顺作为外部激扰输入,运用SIMPACK多体动力学仿真软件,分析了不同行车速度下不平顺的幅值对机车的轮轨动力响应的影响规律。分析结果表明:该局部激扰会使机车轮轴横向力、轮重减载率、横向振动加速度3个指标发生较大恶化;轮重减载率和轮轴横向力会出现同步的同频率同幅值的发散收敛;不平顺幅值的增加或者行车速度的增加都会不同程度地加剧3个指标的恶化。  相似文献   

19.
为了恢复线路平顺状态,某线采用大调量扣件调整轨面高程。通过对大调量扣件地段轨道动力响应测试结果分析,评价其使用效果。分析结果表明,各评价指标均在安全限值之内;轮轨水平力、轮重减载率等指标随列车通过速度增大而增大;增加扣件调高量对轮轨垂直力、轮轨水平力以及脱轨系数的影响较小,但钢轨轨底横向位移、轮重减载率有增大趋势;在曲线段采用大调量扣件会导致钢轨轨头横向位移、轮重减载率和脱轨系数明显增大,建议在曲线地段扣件调高量不宜过大。  相似文献   

20.
与一般的机械系统相比,铁道车辆系统有着特殊的轮轨接触关系。尽管在理论上轮轨接触的几何关系是确定的,但是它具有很强的非线性特征,在高速运行条件下对铁道车辆运行稳定性有很大的影响。分析了轮轨滚动接触的几何线性和非线性参数表达,并通过车辆临界速度分叉图讨论了它们对车辆运行稳定性的影响。分析结果显示:随着车轮踏面名义等效锥度的减小,会使车辆线性临界速度和非线性临界速度增大;而在名义等效锥度大致相同时,轮轨接触的几何非线性参数的变化对车辆的动力学响应有比较大的影响,随着它的减小,速度分叉图中轮对横移幅值小的临界速度明显减小。从现场实测数据分析也能得到相似的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号