首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
为研究弹条断裂失效原因,以地铁常见DI弹条为研究对象,分析和总结断裂DI弹条材料宏观及微观特征,初步发现伤损弹条裂纹源区凹凸不平,存在表面缺陷。建立扣件弹条及铁垫板有限元简化模型,分析弹条中肢与扣件铁垫板不同安装深度对弹条强度的影响,发现非正常安装2 mm以上弹条中趾接触位置出现接触应力集中斑,且超过正常安装深度4 mm时应力急剧增大。通过对DI弹条自由、安装下试验模态参数识别,首次得到弹条中肢相对于扣件铁垫板不同安装深度下模态参数特征,弹条模态仿真结果与试验结果对比误差在3%以内。借助行车条件下弹条模态特征及钢轨波磨测试分析结果,揭示DI弹条中肢在超过正常安装深度2 mm以上其安装模态频率与钢轨磨耗激励频率范围(462~668 Hz)基本吻合,导致在周期性强迫振动激励作用下发生共振失效的机理。基于DI弹条断裂失效机理,以“远离激励频带、减小振动幅值及保证互换安装”为改进目标,对弹条进行结构阻尼优化。相对原DI弹条参数特征,优化结果显示,阻尼弹条强度满足材料要求,且疲劳寿命提高4.86倍;阻尼弹条安装模态频率先减小后增大,成功避开钢轨波磨激励频率范围;阻尼弹条主峰值频率幅值下降8.4%...  相似文献   

2.
高速铁路无砟轨道在钢轨波浪形磨耗或车轮多边形磨耗等影响下扣件产生共振导致弹条断裂的情况时有发生。WJ-8型扣件是我国高速铁路无砟轨道结构常用扣件,为了分析其弹条断裂损伤机理,采用锤击激励法对扣件弹条的模态特征进行了试验研究。结果表明:标准安装状态下WJ-8型扣件配套使用的W1型弹条在0~1 000 Hz频率范围内具有2阶模态,第1阶模态振型为弹条两侧肢以扣压端和支承端为支点反对称外翻振动,两侧肢的振动方向相反,第2阶模态振型为弹条两侧肢以扣压端和支承端为支点对称外翻振动,两侧肢的振动方向相同;弹条固有频率波动与安装状态有关,可通过调整弹条安装状态,避免弹条在轮轨的高频激励下产生共振,从而减轻弹条伤损。  相似文献   

3.
根据线性系统的试验模态分析(EMA)理论、SIMO分析方法、多参考点模态测试原理,针对1:8比例车体进行侧墙试验模态测试以及模态参数的辨识。根据比例车体外形尺寸,建立试验测试模型;进行传感器的布置并设置模态测试参数;利用锤击法及DHDAS软件系统进行数据采集及分析后处理;利用Polylscf模态提取法,得到比例车体侧墙的前四阶弹性模态参数和对应的阵型。结果表明:该型比例车体侧墙一阶模态为61.6 Hz、二阶模态为120 Hz、三阶模态为125.5 Hz、四阶模态为139 Hz。通过比较不同输入激励类型,比例车体一阶模态对于激励施加位置不敏感,侧墙激励下的二阶、三阶和四阶幅值大于顶板激励幅值,最大相差5.132 m/s2/N,模态响应幅值对于激励施加位置很敏感。信号频谱成分与模态频率一致,证实了试验结果的正确性。  相似文献   

4.
为了更准确检测出高速铁路扣件弹条扣压力不足,提出了利用脉冲荷载激励下扣件弹条模态特征来快速无损检测扣压力的方法。通过对不同扣压力状态下的扣件弹条进行力锤激励试验,获得相应的弹条模态参数,进而得到扣压力与弹条固有频率的对应关系,最后通过测试弹条模态频率推算出其扣压力。结果表明:标准安装状态下的WJ-7型扣件弹条在0~1 200 Hz内共有两阶模态,分别为781.60、922.86 Hz;移动激励点得到的加速度导纳值有差异,但固有频率相同;不同扣压力下弹条第1阶模态振型特点主要为两侧肢的垂向振动,后肢承受较大扭矩;扣件弹条扣压力与弹条第1阶频率基本呈线性关系,实际线路中可通过测试弹条固有频率来得到扣压力。  相似文献   

5.
针对地铁道床板隔振系统的振动特性和动力响应进行了分析研究,并通过对道床板隔振系统的动态参数进行优化设计,提出了较为完善的技术参数。优化分析结果表明:在选取的参数范围内,其隔振系统的第一阶固有频率都在10 Hz以上,可避开车轮和车轴经过轨道扣件的频率段。如道床垫刚度取0.018 N/mm3,道床板厚度取200 mm,扣件竖向刚度取4.0 k N/mm,则隔振系统的前三阶模态频率分别为14.38Hz、14.57 Hz和16.62 Hz,均在14~17 Hz之间;而在30~35 Hz之间无振型,可有效避开转向架经过轨道扣件的频率。  相似文献   

6.
对某型地铁车辆整备状态有限元模型进行了模态和5~100Hz正弦激励仿真计算,分析设备吊挂刚度对车体地板的振动影响。计算结果表明,车下设备吊挂刚度对弹性车体的各种振动模态均有不同程度的影响;车体空气弹簧位置激励时,地板在不同吊挂刚度时的振动响应主要集中在40Hz以内,合适的设备吊挂刚度可有效的降低地板的振动幅值并增加一阶垂弯频率,吊挂刚度对地板在12Hz以上的振动响应影响不大,同时发现刚性吊挂有助于增加车体的刚度;设备激励时,引起地板振动响应主要集中在20Hz以下,激励频率在车体一阶垂弯模态频率附近时,弹性吊挂刚度小于一定值时才能有效地减小地板振动的响应幅值。  相似文献   

7.
为了提出一种方便高效的扣件弹条服役状态下扣压力的测试方法,首先建立扣件系统精细化的三维实体有限元模型,分析得到扣件弹条扣压力与其固有频率的对应关系,进而提出通过测试弹条工作振动模态从而推测出弹条扣压力的间接测试方法。研究结果表明:扣件弹条扣压力与弹程基本呈线性关系,其对应关系不随轨下胶垫刚度变化而改变,就Ⅲ型弹条而言,其扣压力同弹程之比约为1. 0 kN/mm;服役状态下弹条第1阶固有频率随扣压力变化近似呈线性变化,根据Ⅲ型弹条正常服役状态设计要求以及考虑最大残余变形的安全扣压力,可得在有效扣压力范围内弹条对应的第1阶固有频率为800~1 040 Hz;通过测试服役状态下扣件弹条工作模态频率,即可间接得到服役状态下扣件弹条的实际扣压力,为辨别扣件是否失效提供科学依据和有效便捷的测试方法。  相似文献   

8.
采用ANSYS有限元软件结合SIMPACK动力学软件建立基于Timoshenko梁的柔性轨和柔性轮模型的车辆—轨道耦合动力学模型,以典型的高阶车轮谐波磨耗(阶次为18~21阶,幅值为0.01~0.04mm)激扰作为系统的输入激励,对比分析在柔性轮柔性轨模型与刚性轮轨、柔性轮刚性轨和柔性轨刚性轮模型下高阶车轮谐波磨耗对高速轮轨系统振动响应的影响。结果表明:当车轮谐波磨耗激扰激发轮对固有模态引起共振时,基于柔性体模型计算出的振动响应幅值大于基于刚性体模型计算的结果,而当激扰频率远离共振模态频率时,基于刚性体模型计算的振动幅值大于基于柔性体模型计算的结果;总体上,轮轨垂向力、钢轨及轴箱振动加速度随着车轮谐波磨耗幅值、阶次及列车运行速度的增大而增大;在车辆速度300km·h-1、车轮多边形阶次为20时,车轮多边形幅值0.04mm激起的钢轨及轴箱振动加速度峰值约为幅值0.01mm下的2.5倍;当车轮多边形幅值固定、阶次由18阶增至21阶时,激起的钢轨振动加速度仅增大约1.6倍、轴箱振动加速度级增大约5.7dB,相较于多边形幅值而言,多边形阶次对轮轨系统振动响应的影响较小。  相似文献   

9.
为得到客货共线铁路用Ⅱ型弹条的模态特征,采用有限元模态分析方法对其在自由状态及标准安装状态下的模态特征进行了数值模拟。计算结果表明,0~1500 Hz频率范围内Ⅱ型弹条在自由状态和标准安装状态下分别存在5阶和2阶模态。对Ⅱ型弹条在自由状态及标准安装状态下的模态特征进行了室内试验验证,试验结果与数值计算结果基本一致,验证了有限元模型的准确性及有限元模态分析方法的正确性。  相似文献   

10.
为了解决高架轨道桥梁结构引起的振动及二次结构噪声问题,研究多模态TMD对轨道箱梁结构的减振效果。首先,利用有限元法建立轨道箱梁结构动力分析模型,通过约束模态分析确定其受控模态;然后,基于TMD定点理论及多自由度等价质量识别法,计算箱梁附加TMD的最优设计参数,并利用列车荷载-轨道箱梁-TMD耦合分析模型,研究多模态TMD对轨道箱梁结构低频振动的控制效果。研究结果表明:(1)轨道箱梁结构第2阶模态振动贡献最大,振型贡献率为0.784,其次是第10阶和12阶,可同时作为受控模态进行附加TMD设计;(2)在附加了多模态TMD减振系统后,轨道箱梁结构低频共振能量显著降低,且振动控制效果和质量比大小成正比关系;(3)列车荷载作用下,轨道箱梁结构附加一定质量比组合的多模态TMD后,固有频率附近频段5~10 Hz、20~31.5 Hz的加速度响应幅值显著降低,Z振级最大可减振3.91 dB。  相似文献   

11.
地铁扣件DI弹条安装受力分析及工艺优化改进研究   总被引:1,自引:1,他引:0  
为了整治地铁扣件DI弹条扣压力不足、疲劳断裂、锈蚀等病害,通过建立DI弹条扣件系统有限元模型进行安装状态受力特性分析,同时对弹条生产的原材料、工艺参数、表面处理方式等进行优化改进,最后对采用新工艺生产的DI弹条进行扣压力、疲劳试验和盐雾试验,验证了优化措施的有效性。研究结果表明:弹程为10. 5 mm时,弹条最大等效应力值为1 400 MPa,发生在弹条后拱小圆弧内侧,此区域为弹条关键受力区;相比60Si2Mn,采用60Si2MnA弹簧钢为原材料的弹条扣压力从8. 17 k N提高至8. 79 k N,疲劳次数从503万次提高至541万次。最优的弹条生产工艺参数为:加热温度应为930~1 020℃,淬火温度应≥830℃,淬火介质应为32号机油,淬火介质温度应为60℃±20℃,回火设备应为网带式连续回火炉,回火温度为500~550℃。弹条表面经多元合金共渗处理后的综合性能最好。  相似文献   

12.
基于现场锤击试验的地铁轨道振动特性分析及参数研究   总被引:3,自引:3,他引:0  
近来,由于轮轨共振而产生的地铁钢轨异常波磨问题备受关注。轨道结构动力特性分析是开展轮轨耦合振动研究的基础,地铁轨道结构的动力特性取决于各组成部分(钢轨、扣件、轨枕和道床等)的物理特性及其组合形式。基于轨道结构的周期性频域解析模型,结合北京地铁在线锤击试验,通过计算轨道结构在脉冲荷载下的频响函数,对0~2000Hz频段内轨道结构的动力响应主频进行分析;并通过改变轨道结构参数,分别研究了不同轨道结构参数对各轨道结构动力响应主频的影响情况。研究结果表明:轨下支撑刚度对钢轨共振频率影响较大,枕下支撑刚度对轨道系统共振频率影响较大,轨下和枕下支撑阻尼仅能改变各共振频率点的响应幅值;轨枕支撑间距对pinned-pinned共振频率影响较大,对其他共振频率点的影响较小。  相似文献   

13.
有砟轨道动刚度特性研究   总被引:1,自引:1,他引:0  
为充分了解轨道动力特性,对有砟轨道动刚度展开研究。通过建立有砟轨道力学模型,分析0~2 000 Hz范围内轨道动刚度的振动特性,得出:轨道动刚度相对于轨道静刚度是随激振频率变化的,轨道动刚度在低频段受激振频率变化影响较小,在中、高频段内轨道动刚度振动幅值随激振频率变化而变化,是系统的固有特性,需通过对构件刚度、阻尼等参数调节。阻尼系数对轨道动刚度的幅值有影响,但不改变轨道的共振频率。质量阻尼系数对轨道动刚度波动范围及幅值的影响小于刚度阻尼系数的影响。阻尼系数增大,轨道动刚度波动幅值增大。  相似文献   

14.
轨下垫板刚度的时变特性及其影响研究   总被引:4,自引:4,他引:0  
以WJ7-A型轨下垫板为对象,测试轨下胶垫刚度随服役时间的变化,分析垫板刚度的时变特性;然后以此为基础,建立车辆-轨道垂向耦合动力学模型,研究轨下胶垫时变特性对轮轨随机振动响应的影响规律。研究结果表明:随着服役时间的增长,轨下橡胶垫板的刚度将增大,2年后垫板刚度的增幅为13.91%;随着运营时间的增长,车体振动加速度变化微弱;轮轨力及扣件力的第二主频幅值增大并向高频移动,且扣件力变化更显著,线路运营2年时间后,扣件力第二主频向高频移动7.4 Hz,幅值增幅达到53.80%。建议定期抽样测试轨下胶垫刚度并及时更换性能老化垫板,降低轮轨垂向力和扣件力。  相似文献   

15.
对朔黄铁路弹条Ⅱ型扣件使用现状进行现场调研,发现弹条Ⅱ型扣件主要存在轨下垫板压溃或窜动,轨枕承轨槽磨损、弹条松弛、轨距挡板磨耗较大、挡板座压溃或断裂等问题.在保持既有Ⅲ型轨枕不更换的前提下对弹条Ⅱ型扣件主要部件进行强化设计,研制出SH-J型扣件.经过现场试铺、轨道结构动力性能测试和长期跟踪观测,SH-J型扣件各项测试数...  相似文献   

16.
为了探究中低速磁浮道岔主动梁自振特性,以清远磁浮旅游线道岔系统为对象,建立3台车和2台车道岔主动梁的有限元模型,对安装面刚性约束和弹性约束下道岔主动梁进行有限元模态分析,与道岔主动梁自振特性实测结果进行对比,研究结果表明:安装面位移约束下3台车和2台车道岔梁的低阶模态频率显著大于实测值,弹性约束下道岔梁模态分析结果与实测结果接近,故中低速磁浮道岔梁有限元建模时应施加弹性约束;相较于2台车道岔梁方案,3台车道岔梁的垂弯模态频率有明显提高,但10~30 Hz频率内的横弯和扭转模态频率变化不大,仅仅增加中间台车抑制和减缓磁浮车岔15~20 Hz耦合共振的效果并不理想,提高道岔梁阻尼和加强道岔梁约束是更合理的选择。  相似文献   

17.
弹性支承块式无砟轨道的减振机理   总被引:5,自引:0,他引:5  
陈小平  王平  陈嵘 《铁道学报》2007,29(5):69-72
为了揭示弹性支承块式无砟轨道的减振机理,为轨道减振设计提供理论依据,运用模态分析法,分析扣件刚度、块下胶垫刚度及部件刚度匹配对轨道减振效果的影响,结果表明:扣件刚度对钢轨570 Hz以下的振动具有较好的减缓作用,对钢轨的高频振动基本没有减缓作用;降低块下胶垫刚度能提高块下胶垫的减振效果;扣件与块下胶垫刚度同取为20~40 kN/mm时,钢轨与支承块将产生共振作用,较高的扣件刚度与较低的块下胶垫刚度相匹配,能提高轨道的减振效果。  相似文献   

18.
推导了多自由度刚体振动系统振动频率和特征向量的解析方法,研究了轨道交通车辆车体设备悬挂方式及其垂向悬挂刚度与车体系统振动频率和车体各阶振幅之间的关系。以某轨道交通车辆车体模态分析为例,对车体模态分析过程中悬挂设备的模拟方法、车体内装和设备的刚度,以及乘客质量对车体一阶垂弯和扭转频率的影响进行了深入分析和试验对比。研究结果表明,设备悬挂方式和悬挂刚度的选择对车体频率有非常显著的影响;与试验相比,考虑设备悬挂刚度、内装和设备自身刚度时对车体主要振动模态有显著提升,应在车体结构设计时予以注意;乘客质量对车体主要振动模态频率几乎没有影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号