首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
提出了基于双端行波法、区段环流法、稳态差动法和GIS(地理信息系统)相结合的电力电缆在线故障定位系统。该系统由配电所电缆监测终端、电缆中间接头监测终端、电缆故障定位GIS展示平台和通信网络4部分构成。对于各种故障类型,系统均能够通过基于百度地图的地理信息系统展示故障点坐标位置。将多种在线故障定位方法和地理信息展示技术应用于城市轨道交通电力电缆在线故障定位,大大提高了电缆供电可靠性和运行维护管理水平。  相似文献   

2.
通过解剖分析杭州供电段管内近几年发生故障的高压电力电缆中间头,找出在电缆中间头附件材质、制作工艺、制作环境和运行环境等4个方面存在的问题,制定了合理选用电缆附件材质、加强业务培训、建立全过程监督机制和建立健全电缆管理台账等解决方案,并经过1年的实践证明,可以有效地降低高压电力电缆中间头的故障率,减少高压电力电缆应急抢修成本的支出,保障铁路供电安全。  相似文献   

3.
阐述电力电缆产生故障的四个主要原因,根据电气化铁路27.5kv专用电缆的使用特点,对规范电气化铁路27.5kv专用电缆的敷设方法、金属保护层的接地方式和电缆头的制作工艺进行探讨。  相似文献   

4.
电力电缆故障类型的判断以及故障点的精确定位是电力电缆故障快速修复的根本途径,电容电桥法则是定位芯线开路故障最有效的方法.电缆使用过程中各阶段的故障预防措施则能避免更大的故障和损失.经过现场实际应用,电力电缆缺陷的现场检测及快速定位在节约成本方面效果颇为显著.  相似文献   

5.
通过ATP-EMTP软件仿真计算和实验室模拟试验,研究铁路10 kV三相电力电缆短路电流对通信信号电缆的电磁影响。结果表明:电力电缆单相接地短路电流随着电力电缆长度的增加呈线性递增关系,而两相接地短路电流的大小与电缆屏蔽层接地电阻和供电变压器电源容量有关;电力电缆接地短路电流在通信信号电缆上产生感应电动势的大小取决于电力电缆和通信信号电缆平行铺设的长度、电缆间距、接地方式及电流的大小;电力电缆发生单相和两相接地短路故障时会在通信信号电缆上产生较大幅值的感应电动势,随着电缆间距的增大,感应电动势逐渐减小;通信信号电缆屏蔽层经综合地线接地比屏蔽层两端经接地装置接地时的感应电动势要大。根据仿真计算和实验室模拟结果,给出在电力电缆发生短路故障时,在屏蔽层不同接地方式、不同接地电阻、不同电缆间距时通信信号电缆最大铺设长度与电缆间距的关系。  相似文献   

6.
结合35 kV冷缩电缆头故障案例,深入分析故障原因,明确电缆终端制作工艺关键点,提出新线筹备阶段严控电缆终端制作质量的要点,降低地铁运营中电缆的故障发生率,延长电缆终端头的使用寿命。  相似文献   

7.
温州市域铁路作为全国第一条市域铁路,其负荷点分布密、用电量大、站间距较长,环网供电系统采用了20 kV单芯全电缆线路供电。为了确保供电可靠性,电缆中间接头第一次在国内采用了20 kV绝缘型电缆中间接头,绝缘型中间接头其壳体采用高强度铜材,壳内浇筑高性能的防水绝缘密封胶,其憎水性、防爆性、电气性能优越,且采用双接地保护,充分保证供电安全。温州市域铁路运行4个月以来,供电稳定可靠,该类型的中间接头可靠、稳定、体积小,可以有效地限制电缆金属层过电压,适用多种工况条件。因此,通过20 kV绝缘型电缆中间接头在温州市域铁路环网供电系统中的成功应用,分析和研究中间接头的选型要求、性能特点以及施工工艺质量要求,为今后高速铁路及地铁工程中绝缘型中间接头的应用提供案例支撑及技术参考,对绝缘型中间接头在高速铁路及地铁工程的应用推广具有重要意义。  相似文献   

8.
针对高速铁路电力贯通线电缆运行中故障类型占比最高的电缆中间接头、终端头绝缘击穿短路故障,分析其成因主要是主绝缘外力损伤、线芯接续工艺不达标、绝缘表层异物爬电及电缆受潮绝缘降低,据此提出提高工作质量、改进检测试验方法和创新维修思路的应对措施,旨在提高高速铁路电力贯通线电缆运行状态及寿命管理水平。  相似文献   

9.
高速铁路10 kV电力电缆的供电可靠性直接影响高速铁路列车的安全、可靠运行。针对高速铁路10 kV电力电缆出现故障时的特征,提出一整套利用暂态行波的高速铁路10 kV电力电缆行波故障测距方案,并研制出电缆行波故障测距系统。该系统通过电缆行波采集装置采集电缆铜屏蔽层接地引线上的电流信号,采用单端行波故障测距原理进行故障测距,同时介绍了电缆行波故障测距系统所用到的关键技术。实际运行表明高速铁路10 kV电力电缆行波故障测距系统不仅能够实现单端行波故障测距,而且测距精度很高,使高速铁路10 kV电力电缆的在线监测成为可能,具有很强的实用性。  相似文献   

10.
随着10 kV电力电缆和27.5 kV牵引供电电缆在铁路新线建设中的广泛应用,高压电缆在供电设备中的占比正快速增加,若建设源头质量控制不到位,将给后期运营管理带来极大的安全风险。本文通过分析高压电缆的典型故障案例,总结在新线介入和验收过程中发现的典型问题,探讨并提出在高压电缆建设过程中的控制重点及措施,为降低后期运营管理成本和确保铁路运输安全提供参考。  相似文献   

11.
随着我国铁路客运专线的规模化建设,为提高牵引供电可靠性,满足GIS开关柜的使用需求,在所亭进出线及接触网供电线上网处普遍采用27.5 kV单芯电缆,而其高可靠性直接影响到牵引供电系统整体的可靠性。根据既有客专电缆上网形式及接地保护要求,以及电缆故障原因分析,总结优化了牵引供电电缆接触网引上方案及直供、AT供电形式下的电缆保护方式,并通过对电缆中间头及终端头的分析探讨,提出了沿桥架或格构式钢柱上网等可靠性保证措施,为牵引供电电缆施工及运营检修维护提供借鉴。  相似文献   

12.
以高速轮轨关系空间为边界条件,分析高速转向架的非线性稳定性、拖车构架点头迟滞非线性和抗蛇行高频卸荷机制,并根据实践经验将提高高铁车辆稳定性裕度的主要途径归纳为2种抗蛇行模式,即大阻尼抑制蛇行和抗蛇行吸能频带.但大阻尼抑制蛇行将带来降低车体横向平稳性和恶化轮轨磨耗等诸多负而影响.因此,针对构架振动报管等高铁应用的新问题,提出基于抗蛇行吸能频带的安全稳定性裕度调控方案,并在台架试验基础上制订了抗蛇行软约束的积极对策,仿真预期结果表明其完全可以保障380 km·h<'-1>运营速度下高铁车辆的安全稳定性裕度.  相似文献   

13.
中天科技的创新产品已经全面进入铁路市场。公司各类铁路信号电缆、铁路贯通地线、电力电缆、特种通信光缆陆续中标轨道交通工程近10000km,良好服务于我国轨道交通建设。我国首条跨海铁路——粤海铁路就使用了中天科技海底光缆。中国京沪高铁超过60%线路使用中天科技阻燃光缆,数量达2600km。世界首条耐严寒高铁——哈大高铁大量使用中天科技耐低温光缆,穿越-40℃冰天雪地。近年来,  相似文献   

14.
接触网用27.5k V电缆因GIS开关柜的使用、占用空间小和免维护的特点在我国高速铁路广泛使用。然而,运用以来发生的故障表明,高压电缆对牵引供电专业还是新生事物,运行维护管理经验明显不足。做好高压电缆的运行维护管理是供电专业近期必须攻克的技术难题。本文对近年来发生的高铁接触网电缆故障进行了分析,并对高压电缆的设计、施工和运行维护管理提出建议。  相似文献   

15.
铁路供电系统中的电力配电系统是为除牵引供电外的所有用电设备供电的系统,其结构形式决定了区间电力电缆是整个系统的薄弱点,故障率较高。当发生电力电缆故障时,所有故障数据分析和开关操作均由供电调度负责,故障区段判别速度较慢,恢复正常运行的总延时较长。鉴于此,设计一套充分利用电力配电系统既有设备实现故障区段快速判别及隔离,恢复正常供电的程控模式,同时利用采集到的电量数据建立电缆结构故障模型,以实现电缆故障位置定位功能。  相似文献   

16.
电力电缆封闭性故障现场非常难以查找,主要原因是由于电缆本身的制造特点,故障点完全被封闭在电缆外皮和铠装的内部,加之电缆敷设条件的变化,往往造成长时间不能处理的局面。本文通过一次对典型的封闭性电缆故障成功查找,对此类电缆故障在查找方面的难点进行了深入的分析,提出了相应的解决方法。  相似文献   

17.
简要介绍了南京地铁2号线列车车门系统的结构与原理。列车在冬季运营时车门中间支撑出现尺寸收缩,导致中间支撑与丝杠由间隙配合变成过盈配合,妨碍了地铁列车车门的开关。使用Ansys建立了中间支撑的有限元模型,仿真分析中间支撑的热应力变化情况,验证了故障源,提出了故障解决方法。  相似文献   

18.
根据高铁中间站管理系统的灰色性与高铁标准化中间站评估工作实际,提出了基于中心点三角白化权函数的高铁标准化中间站评估方法。首先根据调研建立高铁标准化中间站评估指标体系并确定各指标权重值;继而构建基于中心点三角白化权函数的灰色聚类评估模型;最后通过案例,对位于某城际高铁的8个中间站进行了评估,为提高高铁标准化中间站评估结果的准确性提供新的思路。  相似文献   

19.
本文阐述了铁路10k V电力电缆常见故障产生的原因,并对故障性质进行了分析,对电缆故障寻测步骤进行探讨。  相似文献   

20.
新乡新菏线陆圈-算王庄间干线电缆长12km,接头30个.处理漏气接头20个后,还有漏气点.为此,利用“三合一”查漏法,查出电缆漏气点.首先,根据三点气压值确定漏气段;然后,在中间接头上加气闭,逐渐缩小漏气范围,确定最小漏气段;最后,加气门,用微量气压表测出三点气压值,通过计算,判断漏气点.具体操作如下.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号