首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
武汉市常青路改造跨铁路桥采用(95+105)m连续钢箱梁桥跨越,受施工场地限制采用不对称转体法施工。球铰支点长臂端梁长91.4 m,短臂端梁长43.8 m,两端重量差3 000 t,不能单靠配重来平衡转体不平衡力矩。经研究并结合有限元分析计算,提出两支点转体的方案:在短臂端配重2 644 t,同时在长臂端距离转体球铰中心23.6 m处增设一个支点,通过增设支点与配重共同作用,使转体两端达到平衡状态;同时依靠增设支点上的动力系统带动钢箱梁水平转体至设计位置。为论证该转体方法的可行性,按桥梁实体尺寸的1/5制作转体桥和转体系统模型,通过收集和分析模型转体过程中的参数得出结论。本文主要介绍极不对称两支点转体系统模型试验研究技术,重点在于模型的设计和转体数据的监控与分析,从而得出两支点转体施工技术可行的结论。  相似文献   

2.
武汉市常青路改造跨铁路工程为(95 m+105 m)钢箱梁桥,采用转体法施工,转体重量约8 600 t(含配重),球铰支点两端转体重量差3 000 t,为极不平衡转体施工,仅靠在短臂端配重无法满足转体平衡条件。通过研究结合有限元分析计算,得出解决方案:在长臂端距离转体中心23. 6 m处设置转体前支撑,消化一部分不平衡转体重量;通过前支撑和短臂端配重共同作用,使转体两端达到平衡状态,同时依靠前支撑上的动力系统带动钢箱梁水平转体至设计位置,最后大桥顺利合龙。本文主要介绍极不平衡条件下桥梁转体施工技术,重点在于长臂端设置转体前支撑的设计与计算。该桥梁的成功转体对同类极不平衡条件桥梁转体施工有一定借鉴意义。  相似文献   

3.
为明确拖拉落梁施工时支点高差对钢桁梁杆件应力的影响,以一座多跨简支钢桁梁桥为工程背景,利用MIDAS/Civil软件建立空间模型进行数值模拟。研究结果表明:两跨端部主桁出现支点高差引起的钢桁梁杆件应力呈线性变化;支点高差对钢桁梁端斜杆应力影响最为明显;通过调整钢桁梁首尾端支点高差的方法可实现临时连接水平杆件的零应力拆解;落梁作业时,不同步落梁产生的杆件应力大体呈现线性增加的趋势,其中,对角不同步落梁对杆件应力影响最大。  相似文献   

4.
为明确在役提梁机的作业状态对其结构安全的影响,以MT900型提梁机为例,结合其作业过程选取走行轨道的支点高差、支点横向偏差、支点纵向偏差和起升荷载冲击系数4个运行参数作为研究提梁机结构安全的影响因素,以这些参数对主梁应力、支腿应力和主梁跨中挠度等的影响程度为试验目标,基于正交试验设计进行相关数值模拟试验,利用极差分析研究各运行参数对结构应力和挠度影响程度的主次顺序,进而研究影响显著因素对提梁机主梁和支腿应力及主梁跨中挠度的影响规律。结果表明:4个运行参数对主梁应力、支腿应力和主梁跨中挠度均有影响,但对支腿应力的影响最为明显;对主梁应力的影响程度从大到小依次为支点纵向偏差、冲击系数、支点高差、支点横向偏差;对支腿应力的影响程度从大到小依次为支点纵向偏差、冲击系数、支点横向偏差、支点高差;对主梁跨中挠度的影响程度从大到小依次为支点高差、冲击系数、支点横向偏差、支点纵向偏差;支点纵向偏差和支点横向偏差是影响提梁机支腿结构安全的主要因素,且这2种偏差与支腿应力基本呈线性关系。  相似文献   

5.
郑万铁路上跨郑西客专联络线特大桥为主跨138 m独塔斜拉桥,该桥位于半径1 400 m曲线上,采用国内最大横向偏心球铰(偏心距0.847 m),其可靠性与稳定性对保证施工安全至关重要。基于空间有限元软件Midas FEA分析转体结构在施工过程中的局部应力分布,并研究预应力筋对转体结构力学性能的影响。结果表明:(1)转体结构整体处于较低的应力状态,局部存在应力集中,可通过构造措施保证其力学性能;(2)预应力筋的配置可大幅减小由于局部承压而产生的拉应力,确保转体施工中上下转盘的结构安全;(3)通过设置预偏心,实现了转体施工在大跨度小曲线斜拉桥上的成功运用,降低了桥面配重和转体重力。上述研究成果可为同类型桥梁转体施工提供重要借鉴。  相似文献   

6.
针对双薄壁墩的T构转体桥0号块内部结构复杂,施工阶段桥梁结构受力情况发生变化,以太白集特大桥T构桥为研究对象,对其悬臂施工阶段控制工况0号块进行空间应力分析。采用实体有限元软件MIDAS-FEA建立0号块与刚构双薄壁墩局部精细化有限元分析模型,以不同施工阶段梁段受力情况为荷载工况,通过圣维南原理在1号块块端施加荷载,分析悬臂施工过程0号块以及双薄壁墩空间受力情况与应力分布特点,为实际工程施工提供相应参考。研究结果表明,在悬臂施工阶段2种最不利状态下0号块与双薄壁墩均处于受压的状态,0号块横隔板受到很小的拉应力,双薄壁墩受到的压应力小于0号块所受到的压应力,T构转体桥最不利施工阶段为桥梁处于最大双悬臂状态时。  相似文献   

7.
为了研究曲线异形双层人行钢桁梁力学性能,依托国内首座双层人行钢桁梁,以有限元法为基础,借助结构分析软件Midas civil建立异形钢桁梁数值模型,计算双层人行桥各荷载组合作用下结构各部件应力和结构纵、横向挠度,并结合异形双层钢桁梁特点,计算结构稳定系数及支反力,同时研究人字叉对结构稳定及支反力的影响。研究结果表明:最不利荷载组合作用下,结构最大拉、压应力均发生在斜腹杆位置,由最不利荷载工况引起的结构最大纵向挠度为L/1 340,结构挠度及各部件应力满足规范要求,上层满布人群荷载时结构稳定性系数最小,设置人字叉时,结构稳定系数变化较小,主要削弱边支点支反力峰值,起平衡结构支反力的作用。  相似文献   

8.
以一座预应力混凝土连续刚构桥作为研究对象,采用MIDAS/Civil有限元软件进行数值模拟,对影响大跨度箱梁桥挠度的因素进行敏感性分析。研究结果表明:大跨度连续箱梁桥挠度对张拉控制应力最为敏感,其次为预应力损失,对其他因素的敏感性都不大;跨中挠度变化最大,对各因素的变化最敏感。  相似文献   

9.
三索面三主桁斜拉桥主跨跨度630 m,为公铁两用斜拉桥结构。钢桁梁采用N字形桁架,桥塔为菱形加倒Y形混凝土结构,塔高为225 m。为研究该桥结构的受力,建立该桥密横梁有限元模型,进行合理成桥状态模拟计算,分析各个工况下结构的内力和变形。结果表明:斜拉索最大应力为724 MPa,主桁竖向最大挠度为112.3 cm,梁端转角为1.98×10-3rad,主桁横向最大位移为4.8 cm。该桥在应力、稳定和刚度方面均满足规范要求。  相似文献   

10.
滑道是转体桥梁的关键部件,滑道不平顺将直接影响转体过程中桥梁的安全与稳定。为研究滑道不平顺对大跨度转体桥梁的动力性能影响规律及其合理取值问题,基于某大跨度跨线桥梁转体施工现场实时监测并结合数值模拟分析方法,开展不同程度条件下滑道不平顺对转体桥梁关键部位受力、变形、振动等动力响应影响研究。研究结果表明:实测转体桥梁滑道不平顺差异性较大,其数值介于0~15 mm之间,滑道不平顺的存在会导致转体桥梁单侧发生较小程度的倾斜;转体过程中,滑道不平顺差异变化速率与转体箱梁梁端振动响应成正比关系,其变化速率越大,梁端振动越剧烈,且环形滑道不平顺的数值差异也引起转体桥梁端振动响应不一致;0,5,10,15,20 mm和22 mm六种滑道不平顺条件下,转体桥梁主梁线形、撑脚应力、梁端竖向加速度和梁端动挠度整体表现为随着滑道不平顺数值增加而逐渐增大的趋势;滑道不平顺数值超过15 mm后,撑脚应力和桥梁振动响应明显增大,桥梁安全与稳定性降低,建议将转体桥梁滑道不平顺安全控制值确定为≤15 mm,以供类似转体桥梁结构参考使用。  相似文献   

11.
钢管混凝土系杆拱桥在施工过程中,其稳定体系尚未形成,在横向风荷载作用下几何非线性明显,拱肋极易产生较大侧向位移和扭曲,对拱脚受力不利。本文以商合杭高速铁路140 m钢管混凝土系杆拱桥为研究背景,采用Midas Civil和Midas Fea建立了整体与局部有限元模型,研究了在静风荷载作用下,系杆拱桥施工阶段拱脚的应力分布规律。研究表明:施工过程中,在风荷载作用下拱脚处均出现了主拉应力大于混凝土容许抗拉强度区域,区域主要分布在拱座与系梁交界处;通过设置缆风绳可以有效降低几何非线性影响,减少了拱肋横向挠度,保证拱脚受力安全。  相似文献   

12.
上跨铁路转体桥梁主墩大型基坑施工会引起周边土体的附加受力和变形,可能导致邻近铁路路基沉降破坏,危及行车安全。基于有限元软件MIDAS-GTS NX对某城市公路转体桥梁主墩基坑施工过程进行三维数值模拟,通过与现场实测数据的对比,验证数值模型及计算结果的可靠性。研究表明,基坑施工引起周边土体的变形随其与基坑边缘距离的增加呈现抛物线变化;主墩工程桩设置对基坑底部隆起位移有显著抑制作用,设置工程桩工况下,坑底最大隆起位移较无工程桩工况降低91.3%;工程桩整体发生向上位移,由基坑中心向边缘方向上桩基竖向位移量呈递减趋势,基坑中心桩竖向最大位移为4.2 mm,基坑边缘桩最大位移为0.35 mm;桩身整体承受拉应力,随着埋深增大拉应力逐渐增大,桩顶处承受拉力约为桩底的1/12。最后,依据数值模拟分析结果,对上跨铁路转体桥梁主墩位置、选型及结构设计提供合理化建议。  相似文献   

13.
新建郑万铁路联络线特大桥跨越郑西高铁采用2×138 m独塔斜拉桥方案,为预应力混凝土曲线斜拉桥,采用支架现浇后转体就位施工。考虑到曲线梁转体不可避免存在大横向偏心的边界条件,采用刚塔柔梁的设计理念,增加主塔刚度、优化主梁断面形式,大大减小了球铰横向偏心距。介绍独塔转体施工斜拉桥设计方案,并根据实际施工阶段建立有限元模型计算分析,确定结构的合理形式,计算拉索、主梁、桥塔等结构应力、刚度、稳定性等设计参数。结果表明:(1)该桥主体结构应力、变形等均满足规范要求;(2)曲线斜拉桥采用支架现浇后转体施工,横向需设置预拱度;(3)上跨高速铁路,采用转体斜拉桥方案能有效降低梁高。  相似文献   

14.
以商丘站西咽喉区梁园路铁路框架桥为例,桥址处地下水位高,且临近郑徐高铁,开挖时无法采用常规竖井抽降水,为保证支点桩施工可行性,提出支点转换过渡方式完成架空支点桩施工;同时,该工点位于铁路道岔区,股道较多,需采取纵横抬梁法进行线路加固。本文通过对纵横抬梁体系结构强度、刚度、应力等方面的检算,并以施工监测结果为指导,论证计算结果的时效性;最后对支点转换架空方式进行优化设计,以解决人工挖孔困难的问题。研究结果表明,道岔区纵横梁强度、刚度、局部应力均满足行车及规范要求,支点桩过渡转换方式能有效解决由于地下水位过高、人工挖孔困难的问题,研究结果可为今后同类型顶进框架设计提供经验。  相似文献   

15.
大跨度预应力混凝土连续箱梁施工监测控制研究   总被引:2,自引:0,他引:2  
研究目的:针对大跨度弯曲连续梁或连续刚构桥悬臂挂篮施工挠度、应力和几何形位的变化,解决施工过程中挠度控制、应力监测和几何形位的控制问题.研究结果:解决了大跨度曲线连续梁桥悬臂挂篮施工的挠度控制、应力监测和几何形位的控制方法问题,桥梁成桥后的测量检验结果表明,控制与监测效果良好,其挠度和几何形位完全符合设计和桥梁施工规范的要求.  相似文献   

16.
针对高速铁路下承式结合梁系杆拱桥,通过有限元分析,对纵横梁桥面系和密布横梁桥面系2种结合方式、混凝土桥面板不同的分块方式等问题进行研究。结果表明:纵横梁桥面体系在纵横梁交点处存在应力突变,其横梁应力较密布横梁高。对于密布横梁方案,随着混凝土断缝数量的增多,系梁挠度增幅不大,系梁和拱肋内力变化不大,但横梁应力有所降低,混凝土桥面板的整体应力大致呈降低趋势;在施工上,密布横梁体系比纵横梁体系简单方便。对于128 m跨度双线下承式钢系杆拱桥的桥面结合方式,建议采用密布横梁体系,桁距16 m,混凝土桥面板设置断缝,按5节间(25 m 27 m 24 m 27 m 25 m)布置。  相似文献   

17.
随着高速铁路的普及,跨线桥转体技术的应用越来越普及。为确保转体过程中的安全,实现转体的智能化、自动化,能够使转体技术在特殊建设环境中具有更为广泛的应用范围,在降低工程造价上具有更大的优势。通过调研国内外转体桥工程实例,总结出常规转体桥的技术特点及存在的主要局限性,介绍近年来出现的一些转体桥新技术的特点及研究成果。最后,着重从转体工艺、球铰技术、转体动力系统、转体应用等方面对转体桥技术的进一步发展进行展望,提出一些解决措施和思路,为今后的桥梁转体技术发展提供参考。  相似文献   

18.
在目前复杂的桥梁结构建设中,为了更好地研究超宽超重T构转体桥整体稳定性,除了与设计图纸、施工工艺、现场环境等有密切关系外,更应注重对桥梁施工过程和转体过程进行线形和应力监控。本文采用有限元软件Madis/civil建立主梁结构模型,对桥梁施工全过程进行仿真模拟,分析关键施工阶段的结构受力特点和变形状况以及成桥后的结构受力情况,确保桥梁施工过程安全。同时,现场采用水准仪、应力传感器等对转体前、转体过程中、转体后梁桥的线形和应力进行现场实时测量。最后将设计值、有限元分析值和现场实际值进行比较,并分析其差异。结果表明,仅对梁体而言,支架拆除后,位移变化值从中间向两端逐渐增大,应力变化则与位移变化相反;通过有限元分析,调整位移量使得现场线形变化趋势与设计线形变化趋势大体一致,应力值在合理的设计范围之内。  相似文献   

19.
为减小上跨铁路桥施工对电气化铁路的影响,转体法施工被越来越多地应用于跨线桥施工中。以沈阳市一环快速路保工街高架桥工程为背景,研究在转体过程中控制钢箱梁挠度的方法。通过桥梁有限元分析软件对转体钢箱梁采用体外束和临时索塔配斜拉索这2种方法进行了分析和对比。结果表明:在转体施工阶段恒载作用下,梁端下挠700 mm左右,应采取相关措施以减小梁体挠度;2种方法均能减小转体钢箱梁挠度,但在钢箱梁挠度值接近的情况下,临时索塔配斜拉索所需要的钢束数量较少。  相似文献   

20.
南京大胜关长江大桥三桁钢桁梁施工技术   总被引:1,自引:0,他引:1  
南京大胜关长江大桥是京沪高速铁路的重点工程,主桥采用三主桁空间桁架结构,该桥结构新颖,技术含量高,建设规模大。钢梁刚度、重量大,安装支点反力大,悬臂跨度长,合龙端挠度、转角大,合龙点多,钢梁施工难度大。介绍了南京大胜关长江大桥六跨连续三桁钢桁拱桥在吊索塔架及三层平索的辅助下从两侧往跨中架设、跨中合龙的施工技术,以及主跨和边跨合龙所采用的"长圆孔+圆孔"合龙铰技术,可为类似桥梁的施工提供一定的借鉴作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号