共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《铁道工程学报》2017,(5)
研究目的:邻近开挖会对桥梁桩基造成不利影响,严重时将影响高速铁路的运营品质与安全。本文通过现场原型试验,获得深厚软土地区3种开挖工况下邻近桩基的工作性状,采用ABAQUS有限元软件对试验过程进行三维数值模拟,通过与试验结果的对比分析,验证计算模型与参数的合理性。基于验证后的计算模型,探讨无支护开挖主要参数(基坑宽度、边缘净距、基坑深度)对桩身变形与内力的影响规律。研究结论:(1)邻近开挖引起的桩身位移与弯矩分布范围约为设计时主动受力桩的2.1~2.8倍,劣化了桩基的工作状态,在高速铁路运营维护中应引起高度重视;(2)基坑宽度大于5倍的边缘净距时,可忽略继续向外侧加宽基坑对邻近桩基的影响;(3)当边缘净距大于30 m(相当于6倍的基坑宽度)时,开挖窄浅基坑(宽度≤5 m且深度≤3 m)对邻近桩基的影响不大;(4)桩顶水平位移、桩身最大弯矩随深宽比增加大致呈指数型增长趋势,且间距越小,其增长速率越大;(5)本研究成果可供高铁桥梁桩基设计、施工、运营维护借鉴。 相似文献
3.
引入等代层的概念,并将扰动区土体处理为粘弹性介质,采用数值模拟的方法分析了盾构隧道施工后对邻近建筑物桩基的时间相关性影响.建立了隧道和邻近建筑及其桩基的力学计算模型,通过对特征时刻的桩基水平位移值的研究,分析了既有隧道和邻近建筑各计算参数对桩基的影响.研究表明,盾构隧道对邻近建筑物及桩基的影响是时间相关的,隧道在开挖后一段时间内对周边建筑及桩基产生影响,其影响时间的长短与周边土体的粘弹性性质以及隧道和邻近建筑的参数有关. 相似文献
4.
付永乐 《铁路工程造价管理》2013,28(4):41-44
在地铁工程建设中,盾构法施工得到推广使用。而当近距离侧穿建筑物的桩基时,盾构推进会对桩基周围土体及桩基产生影响,从而引起地表沉降,危及建筑物的安全。此文以深圳地铁某隧道区间盾构施工近距离侧穿一建筑物桩基为工程背景,选取桩基与隧道间距最小的断面,采用有限元软件,建立数值计算模型,研究盾构推进对桩基周围土体及桩基的影响程度,以及造成的地表沉降。研究结果表明:桩身最大侧向位移出现在隧道轴线位置附近,桩的竖向沉降量沿桩长变化很小,桩身弯矩沿桩身分布,有正弯矩区和负弯矩区,桩身轴力沿桩长逐渐增大,到隧道轴线位置时达到最大值。隧道顶正上方地表沉降最大,为12.6 mm,两侧沉降量逐渐减少,形成一个横向沉降槽。 相似文献
5.
盾构近距离穿越桥墩桩基时,若盾构与桥墩的间距小于隧道半径,双桩桥墩就会向反方向倾斜。一定程度上加大同步注浆量和二次注浆量,同时对盾构和桩基间土体进行预加固,是一种安全经济的加固方案之一。 相似文献
6.
以西安地铁某区间盾构隧道近距离穿越某立交桥桩基为研究对象,采用三维有限元模型对盾构隧道施工所引起的桩基应力和变形进行模拟计算.根据计算结果,针对既有桩基将产生沉降和倾斜,从而导致桩基产生附加的轴力和弯矩,提出了盾构隧道施工措施. 相似文献
7.
为研究双线隧道盾构掘进诱发地面U形槽和邻近桥梁桩基沉降的影响及控制措施,结合成都地铁4号线下穿复杂建筑群,对盾构掘进引起土体竖向变形的公式进行推导,采用Mohr-Coulomb建立隧道-地层-桥墩基础三维实体模型,模拟开挖过程中不同工况对地表U形槽沉降及邻近桩基水平位移和竖向位移的影响,并与理论公式推导结果进行对比。研究结果表明:盾构开挖引起的沉降主要由盾构正面推力、盾构机与周围土体之间摩擦力导致的土体竖向变形等构成,模拟计算得到的U形槽最大竖向位移为14 mm,公式计算得到的最大沉降为25 mm。桥桩基模拟计算和公式计算得到的最大沉降值分别为13 mm和21 mm。公式计算考虑的因素较模拟计算多,沉降值较模拟计算大,但趋势较为接近。 相似文献
8.
某市地铁1号线盾构隧道近距离穿越一座跨河桥梁,隧道近距离施工可能引起地层发生变形,导致既有桥梁桩基产生附加内力和变形,影响既有桥梁结构的正常使用.采用 ANSYS有限元方法建立三维非线性模型对盾构穿越河道施工进行动态模拟,并从地表沉降形态、桥梁桩基的位移和倾斜变化等方面进行了分析.计算结果表明,地铁一号线过河段施工会导致地表和桩基产生一定沉降,桩基还会产生倾斜,但管片的轴力和弯矩均在合理的范围内,能确保桥梁整体安全性. 相似文献
9.
10.
以南京城轨线胜太路站至南京南站盾构区间隧道为研究对象,对隧道近距离下穿京沪高速铁路桥梁桩基的盾构施工过程进行了三维数值模拟。分析结果表明:盾构施工过程中,桥梁桩基不仅产生了水平位移,而且发生了倾斜;盾构施工引起的地层扰动使周围土体及桩基产生沉降,从而导致桩基产生附加力,降低了桩基的承载力;施工前在隧道与桩基间设置隔离防护桩,能有效减小盾构施工对桥梁桩基的扰动。 相似文献
11.
《现代城市轨道交通》2021,(7)
南京地铁 7 号线万寿村站—丁家庄站区间线路多段穿越上软下硬复合地层,且以曲线隧道先后近接经五路高架桥和涂家营桥,最小水平净距 1.26 m,复合地层、曲线隧道和近接桥梁桩基是该区间工程的重大风险源。文章采用数值模拟方法,建立复合地层曲线盾构隧道近接桥梁桩基三维数值仿真模型,计算复合地层曲线盾构隧道开挖后,邻近经五路高架桥桩基和涂家营桥桩基的横向位移、竖向位移和曲线隧道的超挖量。计算结果表明,经五路高架桥桩和涂家营桥桩的横向位移均超出桥桩横向位移控制值,需采取控制措施保证施工安全。依据计算结果,提出监测隧道纠偏量、控制壁后注浆量等控制措施,进而控制桩基变形,保证施工安全。 相似文献
12.
杭州地铁1号线工程城站站~湖滨站盾构区间在507 m长度范围内,双线盾构连续近距离穿越4组桥梁共计38组桥桩.施工所形成叠加影响,极易引起桩周土体应力状态的改变,可能造成桩基承载力的损失,甚至影响既有桥梁的使用安全.在工程实施过程中,采取了洞内注浆加固等一系列措施,控制了盾构施工对外部环境的影响,确保了周边建构筑物的安全. 相似文献
13.
14.
深圳地铁一期工程竹-侨区间右线穿越正在进行改造施工的侨城东立交桥,桥梁桩基和隧道间距非常小。通过采用密孔控制爆破技术,加强施工支护,确保了桥梁桩基的安全。 相似文献
15.
路基变形是关乎运营铁路安全的重要指标,同时也是运营事故的潜在诱发因素。盾构隧道下穿既有铁路是造成其路基变形的重要原因之一,因此基于工程地质详勘确定了不同工况的地基强度参数,开展路基沉降变形数值计算分析。研究结果表明:地基采用不同加固方式处理后的铁路路基,其地基加固强度与路基顶的沉降变形值呈负相关性;地层损失对于路基沉降变形有较大影响,且在一定范围内路基沉降变形随着地层损失率的增加而逐步增大,地表沉降槽宽度系数与地层损失密切相关;采用MJS工法加固盾构隧道周围土体能够减小盾构穿越路基的沉降。本研究结论可为有效解决盾构穿越路基的沉降变形问题提供借鉴参考。 相似文献
16.
17.
1 工程概况北京地铁10号线草桥—樊家村站区间从东往西连续穿越京九铁路路基和京沪高铁桥梁群桩基础,区间隧道为6m直径的盾构隧道,隧道埋深14.9 m,静止水位埋深约25 m,隧道所处地层从上至下依次为杂填土、细中砂、砂质粉土、粉细砂、新近沉积卵石、粉质黏土、第四纪晚更新世冲洪积卵石等,下穿段隧道穿越地层为第四纪晚更新世冲洪积卵石层.京九铁路为两股道,碎石道床,钢筋混凝土轨枕,轨道类型为60 kg/m,基础形式为路堤,高出正常路面4~5m.区间右线隧道与铁路斜交61°,相交段长约33 m;左线隧道与铁路斜交70 °,相交段长约30 m. 相似文献
18.
盾构隧道近距离穿越桥墩桩基的力学行为研究 总被引:2,自引:1,他引:1
研究目的:盾构隧道近距离穿越既有桥墩的理论研究在国内尚不成熟,可以类比的工程案例也不多且可比性有限,对此课题进行研究,探讨此类工程的力学行为规律及行之有效的加固措施,是本文研究的目的,可为类似工程提供参考或借鉴. 研究结论:盾构近距离穿越桥墩桩基时,若盾构与桥墩的间距小于隧道半径,双桩桥墩就会向反方向倾斜,一定程度上加大了同步注浆量和二次注浆量.若同时对盾构和桩基间土体进行预加固,则是一种即安全又经济的加固方案之一. 相似文献
19.
隧道施工会引起地层偏移,从而对临近构建筑物产生不利影响。以福州滨海快线首占站-莲花山站区间岱岭隧道为研究对象,利用有限元软件建立三维数值模型,分析了临近既有建筑物的EPB/TBM双模盾构施工对桩基的影响;进一步系统探讨了桩基刚度、隧道埋深、双隧道掘进次序的影响规律。研究表明:桩基刚度越大,隧道开挖引起的邻近桩基弯矩响应就越大;邻近桩基的弯矩响应随着隧道纵轴所处的深度的增加而减小;双隧道不同开挖次序对邻近建筑物桩基影响可忽略。 相似文献
20.
某城市地铁盾构隧道近距离穿越城市立交桥桩基,最小净距仅1.56 m.应用 ANSYS 建立三维非线性有限元模型分析盾构隧道施工对桥梁桩基的影响.采用接触单元来模拟桩基与土体的相互作用,分析不同加固方式下盾构隧道掘进对近接桩基位移和内力的影响.计算结果表明:盾构隧道近接施工时,既有桩基会产生侧移和附加内力;对距离隧道较近且靠近隧道侧的桩基进行花管注浆加固效果不明显;对盾构隧道穿越地层进行加固能有效降低桩基的侧移和附加内力. 相似文献