首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
张捍东 《铁道建筑》2020,(3):104-107,117
以昌赣客运专线(35+40+60+300+60+40+35)m混合梁斜拉桥为例,建立了大跨度斜拉桥上无砟轨道精细化模型计算分析不同荷载作用下大跨度桥上无砟轨道纵向力。计算结果表明:在温度荷载作用下,钢轨纵向应力相对较大,最大拉应力为130.03 MPa,跨中轨道板纵向应力较小。在竖向荷载作用下,钢轨、轨道板和底座板的拉应力最大值出现在桥塔附近,压应力最大值出现在跨中附近,其中钢轨压应力最大值为15.02 MPa,底座板拉应力最大值为3.05 MPa。在列车制动作用下,钢轨、轨道板和底座板的拉应力最大值出现在跨中附近,压应力最大值出现在桥塔附近,轨道板和底座板纵向应力均较小。  相似文献   

2.
为了研究大跨度组合梁斜拉桥施工过程中跨越铁路时的安全性,对该桥13#梁段的施工相关技术进行了研究。对主梁单元的安装方式采用切线法,着重研究了大桥的整体稳定性,大桥构件的安全性以及钢主梁连接处高强螺栓安全性。跨越铁路施工计算结果表明:第二类稳定安全系数最小值为2.86,满足稳定性要求;主塔最大压应力为8.0 MPa,钢主梁最大压应力为120.6 MPa,最大拉应力为38.6MPa,均满足规范要求;高强螺栓的最大剪力为163.1 kN,小于强度设计值。分析结果表明该桥跨越铁路时的施工过程是安全的。  相似文献   

3.
贵阳至广州铁路圣泉1号特大桥是目前国内曲线半径最小、联长及跨度最大的双线铁路桥,主桥为(40+6×80+40)m刚构-连续组合梁体系,采用三刚构墩方案。对于一般直线桥通常在0号块计算分析时采用平面杆系计算模型进行分析,其结果是符合或接近实际情况的。但对于小半径曲线连续刚构桥而言,墩梁固结0号块受力复杂,按平面杆系计算模型所得到的应力状态与实际情况存在较大差异。因此,全面分析其空间应力状态非常重要。本文利用Midas Civil和ANSYS分别建立了全桥整体和0号块局部详细有限元模型,分析了0号块在运营阶段的局部应力,得出0号块整体处于受压状态,个别点出现较小的拉应力;横隔板压应力处于较小值,是薄弱部位;弯矩最大时顶板处于不利状态;扭矩最大时底板处于不利状态的研究结论。  相似文献   

4.
设置新型轨道交通混凝土声屏障是一种非常有效地解决城市轨道交通噪声污染的方法。新型轨道交通混凝土声屏障单元板具有良好的抗风性能是保证声屏障正常工作性能和吸音降噪效果的关键。通过参考最新行业标准和国内外最新计算方法,确定了在正常工作状态下声屏障单元板所需承受的列车气动风压脉动力值。借助有限元软件ANSYS对混凝土声屏障的抗风压性能进行有限元分析,由模拟分析结果表明:在背板和面板承受3.5kPa风荷载时,混凝土的最大拉应力为6.205MPa,钢筋的最大拉应力为17.035MPa,单元板跨中挠度最大为4.96mm;承受最大风荷载7kPa时,混凝土的最大拉应力8.278MPa,钢筋的最大拉应力为22.798 MPa,单元板跨中挠度最大为6.93mm。计算值均小于规范标准值,完全符合工程实际应用要求。  相似文献   

5.
以武汉市江汉六桥主桥的下塔柱为例对桥塔钢-混结合段进行数值模拟和模型试验,研究钢-混结合段各部位在施工阶段和运营阶段的受力性能、应力分布及安全储备。结果表明:施工过程中及荷载组合作用下,混凝土实测最大压应力为6.44 MPa,最大拉应力为4.27 MPa,钢塔柱最大压应力为112.8 MPa,拉应力较小;超载工况下,混凝土实测最大压应力为7.74 MPa,最大拉应力为5.47 MPa,钢塔柱最大压应力159.8 MPa;试验过程中,各测点应力随荷载基本呈线性变化,卸载时残余应力不大,模型基本处于弹性状态,加载时混凝土未发现裂缝;各工况下混凝土和钢结构各测点应力实测值和计算值相差不大;钢-混结合段受力安全可靠,在给定的荷载作用下有足够的安全储备。  相似文献   

6.
刚果(布)布拉柴沿河大道项目主桥为(49+81+285+81+49)m双塔双索面小半径弯曲斜拉桥。设计采用挂篮悬浇施工,施工期间变更为钢管支架现浇,并采用与挂篮等自重的混凝土块模拟挂篮施工过程。基于ANSYS软件建立数学模型,模拟临时移动压重施工过程。结果表明,应力及挠度满足规范要求;随着施工梁段增长,压重对减小主拉应力的作用越来越不明显;锚固区、塔梁固结处应力集中效应明显。  相似文献   

7.
洞庭湖大桥N003#墩组合式沉井直径31.6 m,高17.7 m,埋深16.1 m,下部为钢筋混凝土结构,上部为钢板桩。以该组合式沉井施工为研究对象,总结了大型组合式沉井施工的要点,并对施工安全进行验算。建立仿真分析模型对施工过程中沉井的应力状态、稳定性进行分析。计算结果表明沉井下沉系数、下沉稳定系数满足下沉要求。钢板桩最大有效应力116.5 MPa,最大剪应力66.6 MPa,最大变形7.9 mm,混凝土沉井最大有效应力7.3 MPa,均满足结构受力及变形要求。  相似文献   

8.
地下连续墙一般为普通"一"字型,"L"型、"T"型、"Z"型等异型地下连续墙在成槽质量、地下连续墙钢筋笼制作、钢筋笼吊点设置、吊装以及混凝土浇筑方面,比普通"一"字型地下连续墙施工工艺有更高的技术要求.文章以上海机场联络线软土地层中风井基坑"Z"型地下连续墙施工为背景,从成槽施工工艺、钢筋笼制作、吊点设置、钢筋孔检算与...  相似文献   

9.
缪庆华 《铁道勘察》2023,(5):119-124
新成昆铁路老鼻山隧道掌子面施工揭示溶洞,存在洞顶掉块、溶洞水倒灌等风险,需采用合适的跨越方案。采用调查分析方法对溶洞类型进行判定,提出“拱桥+护桥”结构跨越溶洞方案,并进行了结构设计。为了支撑该拱桥与护桥结构的工程设计,采用有限元方法,建立桥梁结构的三维空间仿真分析模型,针对施工阶段和成桥阶段,从变形、受力等角度系统分析了拱桥主拱圈的静力性能,并讨论受力最不利截面的强度和裂缝情况。研究表明,溶洞内水源补给主要为基岩裂隙水,溶洞整体稳定;在施工阶段,主拱圈最大压应力和最大拉应力分别为5.94 MPa和2.74 MPa,出现在主拱圈拱脚的下缘和上缘位置;在成桥阶段,跨中拱顶和拱脚是不同荷载组合下的最不利截面,混凝土和钢筋的最大正应力分别为11.88 MPa和189.07 MPa,裂缝最大宽度为0.19 mm,应力和裂缝均满足相关规范要求。  相似文献   

10.
根据桥址处地形、地貌、地质情况确定瓮安河大桥主桥采用(155+155) m高墩大跨T构矮塔斜拉桥。梁底以下墩高达130 m,为同类桥梁之最。采用MIDAS/Civil对主桥结构进行计算分析,计算结果表明:该桥强度、刚度及稳定性均满足规范要求,具有良好的静力、动力特性。该桥型结构优美,工程经济,施工简单,可为今后复杂山区铁路桥梁设计提供借鉴。  相似文献   

11.
为研究现浇支架体系的力学特性,以徐盐高铁跨徐沙河(100+200+100)m连续梁-拱项目为背景,进行底板力学性能分析、底板分配梁的强度验算、钢管支架承重梁强度计算、钢管支架强度计算、钢管立柱稳定性计算、支架体系预压数据分析。研究表明:现浇段支架的强度、刚度及稳定性均能满足相关规范要求,实测变形值与有限元理论计算值基本吻合,成桥后梁体线形基本与设计吻合。实践表明,采用相关计算参数后,该桥的施工控制效果较好,工程优良率达100%,缩短施工工期45 d,降低施工成本约6.5%。  相似文献   

12.
针对纳林川特大桥(48+3×80+48)m连续梁悬臂浇筑法施工开展施工过程中预应力施工质量控制研究。在预应力张拉之前,进行管道、锚口、喇叭口摩阻损失测试,根据测试结果提出预应力施工控制措施。在全桥预应力施工过程中,在悬臂施工阶段的关键结构部位以及中跨跨中重要结构部位进行混凝土应力监控,测试值与理论计算值基本一致。纳林川特大桥预应力施工质量良好,梁体预应力状态符合设计要求。  相似文献   

13.
复杂山区铁路设计阶段施工工期确定   总被引:2,自引:1,他引:1  
复杂山区铁路施工工期的确定是施工组织设计的重点和难点。通过对影响复杂山区铁路施工工期的因素进行分析,提出复杂山区铁路施工工期的确定方法。首先制定目标工期,然后对目标工期方案的各桥隧工点施工工期是否满足铺轨架梁工期要求进行可行性评价,再根据评价结果对目标工期进行优化调整,选择经济比选较优且实施难度较小的工期方案作为项目的施工工期。最后,以宜万铁路施工工期确定为例,对该方法在实际项目中的应用进行介绍。  相似文献   

14.
阜阳市向阳路颍河大桥主桥为(47+148+47)m三跨下承式梁拱组合体系钢结构拱桥,主桥上部采用搭设支架辅以跨桥高架龙门吊先梁后拱逐节对称拼装,拼装成型后进行结构体系转换,最后依次拆除梁部拼装支架。受梁下空间限制,位于梁底的上、中、下游3组贝雷梁组拆除存在一定的技术难度及安全风险。为安全、高效地对拼装支架的贝雷梁组实施拆除,借鉴浮拖法架梁的基本原理,在运输船上搭设顶升支架,通过船体浮力将贝雷梁组整体顶升并浮运出梁底,最后用大型浮吊将贝雷梁组吊装上岸。通过对各工况下的顶升支架整体应力及变形、船体稳定性进行力学分析,其结果均满足规范要求。实践证明:该拆除施工方案在技术上是可行的,保证了梁部拼装支架拆除施工安全并已获得国家发明专利。  相似文献   

15.
地铁盾构隧道下穿城际铁路地基加固方案安全性分析   总被引:7,自引:0,他引:7  
苏州某地铁盾构隧道下穿沪宁城际铁路施工时,原有铁路地基加固方案产生的沉降量不能满足高速铁路的要求,因此,结合原加固措施,采用板+桩组合结构的形式对地基进行加固.对此方案,采用二维有限元法分析不同应力释放率下盾构施工引起的地表沉降规律.当应力释放率为30%时,盾构下穿处板+桩组合结构的沉降量为3.9 mm,满足高速铁路无砟轨道对工后沉降的要求,但此时板+桩组合结构中的加固板将与其下方土体脱离.采用三维有限元方法,对高速铁路轨道结构进行静、动应力响应分析.结果表明:当加固板与其下部土体脱离时,在自重应力作用下,钢轨轨面的最大变形为0.582 mm,满足轨道不平顺的要求;在最大列车动荷载作用下,轨道板和加固板的最大拉应力分别为0 93和1.02 MPa,均小于规范中所要求的疲劳强度修正值.由此可知,在盾构隧道下穿施工时,城际铁路地基采用板+桩组合结构形式的加固方案,是能够保证运营安全的.  相似文献   

16.
阜阳市向阳路颍河大桥主桥为(47+148+47)m三跨下承式梁拱组合体系钢结构拱桥,为保证主拱圈的横向稳定,在两片主拱圈顶部设置一道"X"型三维曲面构造钢箱结构风撑,采用搭设支架辅以高架龙门吊在离桥面31.5 m高空进行风撑拼装。运用计算机建模,三维测量放样等技术在车间建立胎架整体制造,然后切割成方便汽运的运输节段,将运输节段在施工现场组拼成大块吊装节段,采用起重量75 t高架龙门吊全覆盖拼装施工;利用三维空间坐标系采集每个吊装节段控制点的三维坐标,通过调节砂箱三维坐标控制风撑定位。为保证风撑拼装顺利合龙,先对称拼装四角处节段,后拼装中间合龙节段,合龙节段预留50 mm的收缩量,根据合龙当天气温现场切割合龙段。实践证明,该桥施工采用一系列关键技术有效解决了施工难题,保证了大桥施工安全及工程质量,缩短了工期。  相似文献   

17.
随着我国波形钢腹板PC组合箱梁桥跨度不断增大,大跨宽幅波形钢腹板pc箱梁桥施工中波形钢腹板吊装定位、内衬及底板质量控制、横隔板临时支撑等关键技术问题亟需进一步完善。本文结合港珠澳大桥珠海连接线工程前山河特大桥施工,介绍了首块波形钢腹板吊装及支撑固定技术;提出了适用于跨河长悬臂波形钢腹板施工的新型拖吊结合式挂篮结构;讨论了内衬混凝土及底板施工质量控制措施,并提出内衬混凝土"内撑外拉"式模板结构及底板降温、挂篮底板后吊点布置方案;指出了横隔板部位临时替代支撑的必要性,为大跨宽幅波形钢腹板PC箱梁桥施工技术推广应用提供参考和借鉴。  相似文献   

18.
依托新建北京至张家口高速铁路延庆下行联络线跨大浮坨村烽火台特大桥主跨连续梁0^#段工程施工,详细地介绍了连续梁0^#段预制完成后吊装就位的施工技术,并制定了安装过程施工质量和安全控制措施。采用该技术,连续梁0^#段和桥梁主墩可同时施工,不仅能保证工程施工质量和工期,而且在北方寒冷地区高空中无法实现冬施措施的项目中具有很强的推广价值。通过新建京张高速铁路桥梁工程的连续梁工程的快速施工,验证了该技术的可行性。  相似文献   

19.
银川绿地中心项目地下2层至地上66层的核心筒剪力墙结构内,设计有一道居中的钢板墙,钢板墙单体构件的截面形式复杂,其中L型构件最大截面尺寸3 108 mm×2 900 mm,对安装精确度要求高,现场施工难度大。为保证现场安装进度和精度,本文通过方案计算优化,从工艺流程出发,对钢构件的分段、吊点的设置和钢构件连接方式等几个方面进行技术研究,利用建模技术和钢板墙的三点吊装技术,确定制造单体,快速准确地调整钢构件的安装位置,提高了安装速度和精度,保证了现场钢构件焊接、吊装质量。  相似文献   

20.
成昆铁路复线完工后,部分老线区段将并入复线,并开行时速为160 km的动车组。为评估老线中典型桥梁在开行动车组后的服役性能,通过数值仿真及现场静动力荷载试验的方式,对某3×64 m连续钢桁梁桥的静力及动力性能进行检测与评估。研究表明,静力荷载作用下,主桁杆件最大轴向拉、压应力分别为143.1,175.4 MPa,均小于容许应力240 MPa,结构具有足够的强度安全储备。第34、35、36孔挠跨比分别为1/1 756、1/1 940、1/1 732,均小于规范规定的1/1 250,表明该桥具备通行动车组的刚度条件。各工况下活动支座纵向位移最大值为3.195 mm,小于支座纵向位移允许限值,表明各活动支座工作状态良好。动荷载作用下,主梁振型、自振频率与既有检定结果差异不大,且均小于理论计算值。主梁跨中竖向加速度、主梁跨中横向加速度、桥墩横向振幅及活动支座横向变形均满足规范要求,表明该钢桁梁桥主梁、桥墩及支座等主要组成部分的技术指标均满足行车要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号