首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
新管幕法(NTR工法)施工工艺有四步,为群管顶进、切管及管间支护、管幕空间内衬砌结构施作和土方大开挖及剩余结构施工。其中群管顶进工序是新管幕法关键工序,亦是新管幕法得以实施的前提条件。对新管幕法和顶管法进行了概述,并结合沈阳地铁二号线新乐遗址站风道设计施工情况,阐述了群管顶进技术在该工程中的应用,最后对该技术进行了总结,并提出自己的看法。  相似文献   

2.
超浅埋暗挖地铁车站施工易引起地表的过大沉降,对周边环境造成不良影响,为控制施工引起的沉降和保证市政设施的安全,引入棚盖暗作法的思路并应用于PBA车站,利用顶进钢管形成棚护体系,在其支护作用进行土方开挖。以北京地铁19号线一期平安里站为工程背景,简述棚盖暗作法PBA地铁车站的特点及施工步骤,对不同施工阶段产生的沉降进行统计分析并对地表沉降槽进行拟合,由此探讨施工引起的地表沉降规律。研究表明:沉降主要发生在管幕施工及导洞开挖阶段,约占总沉降的70%。针对棚盖暗作法PBA车站的特点,对产生沉降的原因进行梳理,提出加强空洞探测及处理、缩短开挖面封闭时间、加强超前支护的棚护效果、减小管幕顶进扰动土体、合理控制群洞开挖步序等沉降控制措施。  相似文献   

3.
为探索黄土地区地铁施工中新管幕法不同结构参数对地表沉降的影响规律,基于ABAQUS有限元软件,对不同管幕间距、不同管径工况及钢管顶进顺序进行正交数值模拟分析。结果表明:采用管幕间切割焊接浇筑混凝土板的管幕预筑法能够更好地减小地面沉降;拱形管幕支护结构相较于矩形结构可产生更小的地面沉降;矩形结构在管径从1 600 mm增大到1 900 mm再到2 200 mm,地面沉降量分别减小5.84%和8.22%,而拱形结构是3.43%和6.48%;在管间距从150 mm增大到250 mm再到350 mm时,矩形结构的地面沉降量分别增大8.34%和7.16%,拱形结构为5.94%及5.25%。通过讨论不同结构形式对地面变形的影响,以期为工程应用提供参考。  相似文献   

4.
管幕工程是港珠澳大桥珠海连接线拱北隧道暗挖段难度最大的项目之一,工程下穿拱北口岸限定区域,埋深4~5 m,管幕平均长度257.92 m,由36根直径1 620 mm的钢管组成。线路位于缓和曲线和圆曲线组成的复合曲线上,其特点是群管顶进、互为接收始发、间距小、曲线半径小、精度控制高、地表沉降小、周边环境敏感。本文对从导线测量、一井定向、顶管测量、轨迹控制到精度估算的技术要点做了详细介绍,可为类似工程提供借鉴。  相似文献   

5.
陈凯 《铁道勘察》2023,(5):149-157
管幕可以为隧道施工提供强度较大的超前支护。为择优选择管幕施工顺序,减少管幕施工对地表沉降影响,以合肥大连路隧道工程为例,采用三维数值分析方法,考虑“先下排后上排连续顶入/先上排后下排连续顶入、先上排后下排间隔顶入”3种顶入顺序,研究不同管幕施工顺序对地表沉降的影响规律。研究结果表明:(1)上排顶管形成的土拱效应对下排起到保护作用,故最佳施工顺序为:先施工管幕上排顶管,再施工两侧及下排顶管;(2)由于顶管端头的高压旋喷加固和端部结构约束,管幕顶进引起的地表变形呈现端部小,中间大的特征;(3)侧排顶管不影响沉降叠加区最大沉降值,横向地表沉降曲线类似于S形,地表沉降最大值为12.7 mm,最终影响范围为24 m。  相似文献   

6.
基于新建京张线八达岭地下车站超大跨及群洞的特点,采用大型非线性有限元软件ABAQUS模拟大规模复杂洞室的开挖全过程,对深埋群洞11种结构断面的整个开挖过程进行模拟分析,并且对开挖断面和开挖顺序进行优化,以尽可能地减少对围岩的扰动,特别是地表沉降控制,在计算过程中将地表沉降位移结果作为对环境的影响指标。计算结果表明:在地下群洞开挖过程中,由于群洞埋深较大的原因对地表的影响不大,引起的地表位移为3.5 mm,在允许的范围内,说明设计方案比较合理,对设计施工具有指导意义。  相似文献   

7.
管幕工法是地下工程的超前支护手段之一,施工中会对地层形成扰动,造成地表沉降;长距离的管幕施工可能因为导向定位精度差使钢管侵入地下工程主体,影响主体工程施工;下穿铁路的浅埋管幕施工更可能因路基的变形过大而影响行车安全.结合工程实践,从管幕施工、工程监测及管幕施工对铁路路基的沉降影响介绍了浅埋长距离管幕的施工方法.  相似文献   

8.
研究目的:围岩变形量过大、地表沉降开裂甚至塌方是浅埋大断面黄土隧道施工过程中最容易出现的工程病害。为解决大断面黄土隧道在浅埋地段施工过程中出现的地表与围岩变形难以控制、施工效率低下等问题,以在建银西高铁上阁村隧道浅埋段为试验工点,通过现场地表注浆与室内试验,从注浆前后地表沉降与围岩变形量及围岩物理力学参数变化等方面对地表注浆在浅埋大断面黄土隧道中的应用效果进行研究。研究结论:(1)地表注浆可以有效控制围岩变形和地表沉降,变形降幅可达27%~50%,注浆后可将地表与围岩变形量控制在规范允许值内,防止隧道开挖过程中出现地表裂缝、坍塌、拱顶沉降量过大等灾害;(2)采用地表注浆后围岩物理力学参数明显得到改善,平均增幅可达10%~35%,提升围岩强度与整体稳定性,确保隧道开挖安全;(3)地表注浆能够提前二衬施作时机,加快施工进度;(4)地表注浆形成的浆-土结合体具有明显的"挤密效应"和支撑作用,可以改善原状黄土的结构性;(5)该研究成果可为大断面黄土隧道的浅埋地段快速安全施工和设计提供参考。  相似文献   

9.
研究目的:大断面黄土隧道开挖可采用双侧壁导坑法、CRD法、台阶法等,本文依托郑州至西安高速铁路大断面黄土隧道工程实例,通过对三种常用工法的理论分析,并结合现场初期支护下沉收敛、地表沉降的监测,对比分析各种工法的优缺点,提出适用于高速铁路大断面黄土隧道安全快速的开挖方法。研究结论:(1)在三台阶七步法、CRD法及双侧壁导坑法中,初期支护在施作二次衬砌前的安全系数分别为1.3、1.4、2.6,CRD法及双侧壁导坑法临时支护安全系数最小值为1.2、1.9,均能保证施工阶段的安全;(2)地表沉降值和黄土性质关联性更强,采用三台阶七步法和CRD法开挖,地表沉降值均在10 cm以上,双侧壁导坑法可将地表沉降值控制在5 cm以内;(3)高速铁路大断面黄土隧道无特殊情况下宜采用三台阶七步法开挖;(4)本研究成果可为类似断面工程的施工提供借鉴。  相似文献   

10.
北京地铁8号线大红门桥站-和义站区间附属风道为跨度16.2 m的单跨结构,采用暗挖洞桩法(PBA工法)施工。为有效控制导洞开挖引起的地表沉降,必须合理安排导洞施工顺序。基于三维数值模拟方法对不同的导洞开挖方案地表沉降分布规律进行研究,并与地表沉降监测结果进行比较分析。结果表明:不同的导洞开挖顺序的地表沉降发展路径差别显著,但最终的沉降值基本一致;随着导洞的开挖,地表沉降槽宽度增加并不明显,但是由于导洞开挖的群洞效应,地表沉降速度发展较快。因此在后续的拱部开挖支护中,必须通过调整支护措施和开挖方案来严格控制地层沉降。  相似文献   

11.
为避免断厅车站产生,传统的浅埋暗挖工法已不能满足现实需要,为此,结合实际工程,将管幕工艺引入到传统的浅埋暗挖车站常用的工法当中,充分发挥各自优点。文章对超浅埋暗挖车站管幕洞柱法施工技术的设计思路、主要技术参数确定原则、如何分阶段开挖及关键部位设计进行阐述,并进一步对管幕间的连接、钢管幕混凝土复合结构薄弱环节加强设计、不同种类支护结构过度设计、沉降控制等问题进行探讨。  相似文献   

12.
函谷关隧道下穿新黄土冲沟施工技术   总被引:1,自引:0,他引:1  
研究目的:研究大断面隧道下穿新黄土冲沟地段施工中的偏压影响,提出防止隧道坍塌的施工技术。研究结论:(1)水泥土回填、混凝土明渠修筑及混凝土咬合桩打设等技术措施,防止了地表水下渗、浸蚀,消除了地表水对湿陷性黄土的影响,提高了冲沟及其边坡的稳定性;(2)应用水玻璃硫酸浆液注浆固结粉砂层等加固措施,减少了因隧道开挖引起的地表沉降,保证了隧道开挖的稳定性;(3)提高隧道初期支护强度和刚度,控制隧道开挖支护变形,可有效控制隧道偏压的影响;(4)通过CRD工法优化,缩短工序距离和工序时间,可以达到初期支护早日成环,对控制黄土隧道变形和地表下沉行之有效。  相似文献   

13.
为了研究双线隧道盾构施工对周围土体的扰动规律及其控制措施,在讨论双孔平行隧道地表沉降计算公式在厦门地铁某区间隧道适用性的基础上,采用双孔平行隧道地表沉降计算公式、数值模拟及现场监测3种方法,揭示双线地铁隧道盾构施工引起的地表沉降分布规律和地表动态变形特性,分析影响地表沉降的施工控制参数的效果。结果表明:(1)双孔平行隧道地表沉降计算公式具有较好的适用性,双线隧道盾构施工完成后,地表形成非对称的"W"形沉降槽;(2)地表沉降本质上是盾构施工引起的土体损失累积造成的,在开挖面到达目标面时,实测地表沉降达到最终沉降值的45%;(3)设置合理的同步注浆、土舱压力和推进速度参数,可以有效控制地表沉降,建议增加同步注浆量作为控制地表沉降的首选措施。  相似文献   

14.
在矿山法隧道施工中,开挖工作面前3倍洞径处、上台阶开挖、支护完成、下台阶开挖、初期支护成环5个不同施工阶段对应的地表沉降量贡献率不同。利用某地铁隧道施工过程中的地表沉降数据,分析得出该隧道上台阶开挖、下台阶开挖阶段产生的地表沉降量分别占整体沉降量的34%和31%,两者之和约占整体沉降量的65%,而其他三个阶段约占整体沉降量的35%。为保证隧道施工正常进行,提出一种矿山法隧道施工地表沉降分步控制的方法。在施工过程中,设置各施工阶段地表沉降控制值,根据各阶段地表沉降量的变化趋势,及时调整施工方法,以保证施工安全进行。经工程验证,该方法安全可行,可为同类型地铁隧道施工提供参考。  相似文献   

15.
研究目的:洞桩法作为一种修建地下车站的新兴工法,发展迅速,但其已有的研究成果主要集中在地表沉降及管线变形上,忽视了地下结构与土体的相互作用,尤其缺乏对于四洞三跨结构洞桩施工引起土体变形研究。本文以北京地铁16号线苏州街站工程为背景,基于实测数据对导洞开挖阶段地表沉降的发展及分布规律进行分析,并结合有限元方法动态模拟地铁车站洞桩法施工过程,研究四洞三跨结构洞桩法各施工阶段引起的土体变形规律。研究结论:(1)多个相邻导洞同时开挖会引起"群洞效应";(2)对地表沉降影响最大的主要是导洞开挖、初衬施工及二衬施工这三个阶段,占总沉降量的比值分别为32%、55%和7%;(3)二衬施工完后,支护体系初步形成,除开挖面底部土体因卸荷产生竖向隆起外,其他土体主要以水平变形为主:拱顶上部土体向车站中心发生一定水平位移,同时拱顶两侧土体受支护结构伸张变形的影响,向车站外侧发生明显水平位移;(4)本研究结论可为洞桩法的推广与应用提供理论依据,并可为类似工程的施工与设计提供参考。  相似文献   

16.
杏林大桥连接隧道下穿鹰厦铁路工程中,4个隧道总长329 m,隧道位于剥蚀残丘地貌与滨海沉积相过渡带,超前支护采用管幕法.介绍了长管幕法施工各工艺过程中的施工方法和质量控制标准和要求,施工实践表明,采用长管幕作为隧道开挖的支护结构,实现了控制地表沉降的目的,确保了施工期间铁路运营安全.  相似文献   

17.
管幕工程是港珠澳大桥珠海连接线拱北隧道口岸暗挖段难度最大的项目之一,其特点是距离长、直径大、管幕轨迹位于曲线上,同时顶管精度要求高,施工难度大。工程下穿拱北口岸限定区域,埋深4~5 m,管幕平均长度257.92 m,由36根φ1 620 mm的钢管组成。线路位于缓和曲线和圆曲线组成的组合曲线上,圆曲线半径约890 m,管节轨迹精度要求±50 mm,地表沉降要求小于30 mm,管幕所处地层地质条件复杂,周边环境敏感。从顶管机选型、顶进阶段划分、顺序和工艺控制等方面做了详细介绍。  相似文献   

18.
研究目的:PBA法在车站暗挖工程中的成功应用能够解决松散软弱地层大面积地下开挖兴建工程的技术难题,基于此,本文以西安黄土地区首个PBA工法车站为工程背景,对先期小导洞开挖数量及开挖顺序的合理确定进行研究,从而得到有效控制地表变形的开挖方式,为该车站的结构设计提供设计参考。研究结论:(1)从车站竖向分析,采用"先上后下"开挖顺序不会对上层土体造成二次扰动,六导洞形式可减少地表沉降约20%,四导洞形式可减少地表沉降约15%;(2)从车站横向分析,采用"先边后中"开挖顺序可有效减少导洞间的群洞效应,六导洞形式可减少地表沉降约10%,四导洞形式可减少地表沉降约10%;(3)从围岩塑性区范围上分析,导洞塑性区主要表现在导洞肩部、帮部及底部,四、六导洞形式采用"先上后下,先边后中"开挖顺序,导洞间塑性区贯通程度及范围都明显减小,可减小由于多导洞开挖对周围土体产生群洞效应的影响;(4)采用"先上后下,先边后中"开挖顺序可有效控制地表变形及塑性区范围,该设计方案可为日后类似黄土地区PBA工法地铁车站提供结构设计依据。  相似文献   

19.
南京南站钢管混凝土施工技术研究   总被引:1,自引:1,他引:0  
研究目的:南京南站"桥建合一"结构,大量采用钢管混凝土柱,但在施工过程中,由于现场施工环境和施工条件的限制,遇到诸多实际工程难题,因此有必要对钢管混凝土施工技术进行研究。针对诸如钢管混凝土柱一次性浇筑高度较大(最大高度18.22 m)、钢管直径较大(直径1 200 mm)、钢管吊装焊接与混凝土浇筑交替进行,管内混凝土流动性和稳定性控制等困难,通过借鉴已往混凝土施工经验,制定各种质量保证措施,应用在实际工程中,确保了混凝土施工的顺利完成。研究结论:(1)一次性浇筑18.22 m钢管混凝土,混凝土原材料可以采用半自密实或自密实混凝土,管内半自密混凝土需人工浇灌和高频振捣;(2)通过混凝土原材料的选择、配合比优化设计以及各种质量保证措施,可以保证钢管混凝土良好的流动性和体积稳定性,从而保证钢管混凝土的填充性能和质量。(3)通过南京南站现场检验,抽样超声波检测可以准确探查钢管混凝土缺陷,有效保障钢管混凝土质量。  相似文献   

20.
地铁区间渡线段结构具有埋深浅、结构复杂、开挖断面大等特点,控制其施工对地表的沉降意义非常重大。对北京地铁4号线某区间渡线段结构进行施工数值模拟分析,分别得到各施工工序所产生的地表位移和塑性区分布情况,经过分析,证明双层小导管对控制地表沉降起到了显著作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号