首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
在外界环境和养护不足影响下,在役的桥梁往往会出现横向连接结构的损伤。为了研究在役多梁式桥梁的荷载横向分布系数,在传统刚接梁法的基础上,考虑湿接缝刚度损伤导致的梁间剪力和弯矩传递的折减效应,根据力法原理建立正则方程并简化,推导出考虑湿接缝刚度损伤的修正刚接梁法。应用ANSYS有限元软件进行实体仿真分析并与本文方法计算结果进行了对比。结果表明,湿接缝刚度损伤对在役桥梁荷载横向分布系数有影响,本文方法计算得到的荷载横向分布系数更接近实际情况。  相似文献   

2.
李克冰 《铁道建筑》2022,(11):62-66
建立不同截面形式的钢混组合梁有限元热分析模型,对典型时段的日照温度场进行数值仿真分析,研究不同因素对温度场的影响。结果表明:钢混组合梁日照温差主要分布在混凝土板厚范围内,钢主梁沿腹板高度方向上的温度梯度较小;与箱形主梁钢混组合梁相比,双工字形主梁钢混组合梁混凝土板温度沿横向分布更均匀;箱形主梁钢混组合梁桥面中线处顶板板厚竖向最大温差为11.67℃,双工字形主梁钢混组合梁混凝土板厚温差小于箱形主梁钢混组合梁,最大温差为7.44℃;随着大气透明度系数的增大,钢混组合梁混凝土板厚温度差呈线性增大,大气透明度系数每增加0.1,箱形主梁钢混组合梁板厚温差增大1.7~1.9℃,双工字形主梁钢混组合梁板厚温差增大1.2~1.5℃;随着风速的增大,钢混组合梁混凝土板厚温差呈二次函数形式减小,箱形主梁钢混组合梁板厚温差受风速影响比双工字形主梁钢混组合梁更大。  相似文献   

3.
钢-混凝土连续组合铁路桥梁综合动力性能试验研究   总被引:2,自引:1,他引:1  
通过对某客运专线的钢-混凝土连续组合板梁铁路桥和连续组合箱梁铁路桥的综合动力性能试验,测试在高速列车通过时钢-混凝土组合连续梁桥的自振特性、动挠度、竖横向振幅、竖横向加速度、墩顶横向振幅、支座位移、脱轨系数、轮重减载率和轨道力等动力响应和安全指标。采用车桥耦合振动理论对2座组合梁桥进行动力仿真分析,对桥梁的动力性能、试验列车运营的舒适性和安全性进行预测,结合已有相关规范,分析实测资料并综合评价2种类型组合梁铁路桥体系的各种性能。试验结果表明,在高速列车荷载作用下,2座组合梁桥梁体及墩身应力增量很小,支座位移也很小;实测梁体竖向自振频率符合相应的规范要求;在高速列车荷载作用下,梁体跨中挠度、横向振幅、竖横向加速度和墩顶横向振幅以及桥梁中跨跨中的脱轨系数、轮重减载率和轨道力符合相应的规范要求。  相似文献   

4.
考虑桥跨布置方案、梁墩线刚度比等因素,进行连续梁桥横向地震反应规律研究.以3跨连续梁桥为例,将其简化为弹性支承的连续梁模型,推导其横向地震反应规律的简化理论计算方法,并结合有限元通用程序分析等墩高条件下梁墩线刚度比变化、边跨对称和非对称条件下墩高比变化对桥梁横向地震反应规律的影响.理论计算分析和数值模拟的结果表明:给出的理论计算方法有效;桥墩横向地震剪力和弯矩分配系数不仅与桥墩的抗推刚度有关,还与桥跨布置方案、梁墩线刚度比有关;桥墩的抗推刚度越大、梁墩线刚度比越小,桥墩横向地震内力的分配系数越大.根据分析结果,提出了连续梁横向抗震优化设计的一般步骤.  相似文献   

5.
为评价一座先简支后结构连续梁桥的承载能力和工作性能,选取其14~#跨和15~#跨进行静载试验,基于荷载试验方法,测试了各工况下控制截面的应变和位移,并与理论计算值进行了比较。研究结果表明:T梁各控制截面上测点的应变校验系数和挠度校验系数均1,结构整体刚度较大;各荷载工况的挠度和应变实测值与理论值变化规律基本一致,除偏载工况中5~#T梁挠度和应变实测值受桥梁荷载横向分布系数影响略大于理论值外,其余截面各测点的实测值均小于理论计算值,桥梁的实际状况较好;各测点相对残余应变和变形均未超出规范限值20%,满足结构刚度要求;T梁测试截面受力状况无异常,桥梁结构整体承载能力及刚度满足设计荷载(公路-Ⅰ级)正常使用要求。  相似文献   

6.
49组合梁设计及施工与结构特性相互影响的研究总结国内外组合梁设计方法和施工技术及方法,重点介绍临时支架法、中间支点升降法、调整混凝土板施工顺序法等架设方法的施工概要;以三跨连续组合梁桥为例,建立组合结构桥梁在不同的施工方法、施工顺序和支撑条件下的三维有限元模型,应用MSC/NASTRAN程序对结构体系随施工过程发生的变化进行模拟分析,  相似文献   

7.
以跨座式单轨交通线路上采用的钢混轨道梁桥为研究对象,利用大型通用有限元软件ANSYS建立三维有限元模型。采用容许应力法计算在4种组合下的竖向和横向位移,分析静力及自振特性。结果表明,轨道梁在静活载作用下竖向位移满足规范要求,采用多种工况组合分析时,顶板最小纵向正应力为–171.42 MPa,底板的最大纵向正应力为146.99 MPa,均出现在结构的跨中位置;横撑和下平纵联的横向正应力为115.63 MPa,剪应力范围为13.85~15.13 MPa,可以看出结构在各个荷载工况下应力水平较低,小于容许应力,轨道梁整体刚度大,具有较好的动力性能,结构设计合理、安全,可为此类桥梁的设计提供理论依据和技术参考。  相似文献   

8.
以(32 40 32)m连续钢混组合梁桥的计算成果为例,研究钢混结构支座负弯矩区混凝土配筋率、预顶桥梁支座对结构的影响,为类似结构设计提供参考。  相似文献   

9.
为充分反映列车与桥梁的动力相互作用,建立三维车辆模型及桥梁有限元模型,依据轮轨接触关系形成车桥耦合动力系统模型;考虑轨道不平顺的随机激励作用,求解车桥系统动力方程,得到桥梁节点的振动响应。在此基础上,计算桥梁构件单元的动应力响应时程。以CRH2型动车组通过某跨度为80m的下承式钢桁梁桥为例,计算分析各局部杆件的动应力时程及不同杆件的应力动力放大系数。结果表明:所给出的计算方法考虑了桥梁横向振动的影响以及轨道不平顺激励,能够真实反映列车荷载作用下桥梁局部构件的动应力响应;在列车荷载作用下下承式简支钢桁梁桥各类杆件中的危险杆件并不一定出现在桥梁跨中,动应力响应沿桥跨方向呈现出与位移响应幅值不同的空间分布趋势;不同类型杆件的应力动力系数不相同;现行规范中关于运营动力系数的计算不能真实反映不同车速下桥梁杆件应力的动力放大效应。  相似文献   

10.
刚构-连续组合梁桥主梁合龙关键技术   总被引:2,自引:0,他引:2  
以郑少高速航海路连接线南水北调大桥辅线桥——大跨径预应力混凝土刚构-连续组合梁桥为实例,利用有限元软件Midas/Civil建立桥梁施工阶段的有限元计算模型,采用数值仿真技术探讨主梁合龙顺序、边跨现浇段满堂支架拆除时机和主梁中跨合龙段顶推力的优化调整等关键技术问题。研究结果表明:先合龙边跨主梁,然后拆除边跨现浇梁段满堂支架,最后合龙中跨主梁的桥梁合龙方案对桥梁线形和结构后期受力有利;在一定变化范围内,顶推力、温度变化均与顺桥向位移成线性关系,拟合计算结果可以得出顶推力与温度变化关系的计算公式,根据该公式可以对设计顶推力进行优化调整。论文所得结果指导了该刚构-连续组合梁桥的主梁合龙施工,并对类似桥梁主梁合龙施工具有借鉴意义。  相似文献   

11.
为计算钢-混凝土组合梁剩余承载力,采用适用于组合梁的非线性有限元建模方法,提出疲劳简化分析法并用于组合梁剩余承载力计算中,通过与试验结果对比证明了该方法的有效性,在此基础上探究抗剪连接度与荷载幅值对组合梁剩余承载力的影响规律.结果表明:组合梁疲劳简化分析法用于计算组合梁剩余承载力可以简化计算过程,且计算结果与试验结果吻...  相似文献   

12.
静风荷载对高墩大跨桥梁位移影响分析   总被引:1,自引:0,他引:1  
为了研究静风荷载对高墩大跨桥梁纵横向位移的影响,为高墩大跨桥梁上铺设无缝线路、无砟轨道提供理论依据,运用有限元软件ANSYS,建立桥梁—墩台—基础相互作用一体化模型,分析了静风荷载对桥梁纵向位移、横向位移的影响以及不同桥型对静风荷载抵抗能力的影响。结果表明,静风荷载作用下,高墩大跨桥梁会产生较大的纵横向位移;在最大风荷载作用下,横向位移产生的轨向不平顺值未超过高速铁路轨向不平顺管理值,且不会影响无缝线路的稳定性;静风荷载下引起梁体和墩台纵向位移会影响梁轨相互作用;采用刚构桥较连续梁桥有利于控制风荷载对桥梁变形的影响。  相似文献   

13.
为验证小边跨梁拱组合体系桥梁在正常运营状态下结构受力性能是否与设计目标吻合,基于现场荷载试验研究了该桥在中载及偏载作用下桥梁各构件内力、变形及应变,同时基于脉冲试验、行车试验、刹车试验研究该桥的自振频率、冲击系数,并最终同有限元计算结果进行对比。试验结果表明:该小边跨梁拱组合体系桥梁静载试验荷载效率系数在0. 86~1. 04,介于0. 85~1. 05之间,满足JTG/T J21-01—2015《公路桥梁荷载试验规程》规定;不同部位控制截面实测挠度均小于计算值;实测振型与有限元结果具有很好的相关性,且实测频率值均大于计算值,同时实测冲击系数平均值小于计算值,表明桥梁结构整体性能及技术情况良好。该小边跨梁拱组合体系桥梁在正常使用状态下主桥承载能力均满足城市-A级荷载等级要求。  相似文献   

14.
研究目的:钢混组合梁的剪力连接件对于钢梁与混凝土桥面板的协同工作起到了关键性的作用,使得钢与混凝土能够充分发挥各自的材料特性。由于公路桥梁规范中没有针对钢混组合梁剪力连接件的计算规定,其他现有规范、论著或国家标准中对钢混组合梁剪力连接件的计算又各有不同,因此有必要对公路钢混组合梁桥剪力连接件的计算方法展开探讨。研究结论:针对多种规范、论著对比分析了栓钉剪力连接件的承载力计算,并得出结论:(1)《钢结构设计规范》与《EC4》计算方法相似,未考虑疲劳、裂缝等,为最低配置数量;(2)《钢桥》(小西一郎)中的计算公式结果较为保守,但能更好的控制栓钉的疲劳、界面滑移等问题,有更好的耐久性;(3)《现代钢桥》(吴冲)与《钢桥》计算公式完全一致;(4)《铁路钢-混凝土结合梁设计规范》参照了《EC4》;(5)《钢-混凝土组合桥梁设计规范》类似《钢规》,分别考虑了栓钉剪断破坏及混凝土压碎破坏的两种情况,并考虑了群钉效应;(6)本研究可对钢混组合梁的剪力件设计提供一定的参考。  相似文献   

15.
以一桥梁施工工程实例为依托,采用有限元软件ANSYS对桥梁悬臂施工中使用的菱形挂篮进行仿真分析.提出3种简化模式计算底模纵梁的承重分配,对比发现将底模纵梁承受的外荷载简化为集中荷载,并分配至挂篮下前后横梁的方法是最优简化计算方法.在此基础上对挂篮底模纵梁承重分配系数进行优化,从而简化了繁琐的挂篮底模纵梁受力分析计算,保证了挂篮结构设计和施工的安全.  相似文献   

16.
研究目的:泥石流冲击作用使桥上无砟轨道产生附加变形,进而可能对桥上高速列车的运行产生影响。确定泥石流荷载模型及其影响是研究该问题的关键之一。为此,本文首先提出一种泥石流荷载简化模型,其综合考虑了泥石流浆体压力、大块石冲击和龙头龙尾效应;然后以成兰铁路上一座多孔简支梁桥为案例,采用有限元法建立无砟轨道-桥梁三维有限元模型,分析泥石流冲击作用引起的墩顶横向位移、梁体跨中横向位移和相邻梁端两侧钢轨支点横向相对位移;最后通过参数分析,讨论泥石流荷载参数对各动力响应的影响规律。  相似文献   

17.
为明确在役提梁机的作业状态对其结构安全的影响,以MT900型提梁机为例,结合其作业过程选取走行轨道的支点高差、支点横向偏差、支点纵向偏差和起升荷载冲击系数4个运行参数作为研究提梁机结构安全的影响因素,以这些参数对主梁应力、支腿应力和主梁跨中挠度等的影响程度为试验目标,基于正交试验设计进行相关数值模拟试验,利用极差分析研究各运行参数对结构应力和挠度影响程度的主次顺序,进而研究影响显著因素对提梁机主梁和支腿应力及主梁跨中挠度的影响规律。结果表明:4个运行参数对主梁应力、支腿应力和主梁跨中挠度均有影响,但对支腿应力的影响最为明显;对主梁应力的影响程度从大到小依次为支点纵向偏差、冲击系数、支点高差、支点横向偏差;对支腿应力的影响程度从大到小依次为支点纵向偏差、冲击系数、支点横向偏差、支点高差;对主梁跨中挠度的影响程度从大到小依次为支点高差、冲击系数、支点横向偏差、支点纵向偏差;支点纵向偏差和支点横向偏差是影响提梁机支腿结构安全的主要因素,且这2种偏差与支腿应力基本呈线性关系。  相似文献   

18.
张平 《铁道建筑技术》2024,(4):113-116+172
为评估既有病害对桥梁承载性能的影响,以某座跨多条铁路线的预应力混凝土空心板梁桥为背景,通过原位静载试验对其承载能力开展研究。根据铁路运营安全保障要求,选择不同试验孔对桥梁挠度、应变、裂缝宽度变化以及上拱度进行测试,并利用数值模拟计算挠度与应变的理论值。在此基础上对桥梁结构校验系数与横向分布系数进行分析,并综合各项试验结果评估该桥承载性能。结果表明:结构校验系数分布在0.22~0.51间,且实测横向分布系数与理论值吻合良好;梁底纵向裂缝宽度在荷载作用下没有明显变化,裂缝的产生与汽车荷载关系较小;空心板梁上拱度介于32.8~43.2 mm,梁体具有充足的预压力。  相似文献   

19.
温度梯度对高墩桥上无缝线路的影响分析   总被引:3,自引:0,他引:3  
为研究温度对高墩大跨桥上无缝线路的影响,基于梁轨相互作用原理,利用有限元方法,建立线—桥—墩一体化模型,计算高墩大跨桥梁桥墩受到纵向和横向温度梯度荷载时钢轨的纵向力和梁轨相对位移。计算结果表明:桥墩受到纵向温度梯度荷载时钢轨受到的最大压力为523.09 kN,与最大附加伸缩力值584.95 kN接近,纵向温度荷载对桥上无缝线路的影响近似等同于附加伸缩力,在设计桥上无缝线路时必须予以考虑;横向温度梯度荷载对桥梁本身的影响较小,在设计中可以通过安全系数予以控制,在设计中可忽略。分析温度荷载对高墩桥上无缝线路的影响,对于桥梁的安全设计和保证桥上无缝线路的稳定状态均具有一定的指导意义。  相似文献   

20.
西北一城际铁路特大桥主桥采用(80+4×144+80)m刚构-连续组合梁,梁体采用单箱单室直腹板截面梁,利用MIDAS/Civil软件建立主桥计算模型进行动力特性计算,并对比不同固结方式、桥墩墩身壁厚、横系梁设置方案下桥梁的自振特性,得出最优桥墩设计方案。通过主桥结构静力计算验证桥梁设计方案的合理性并确定合龙顺序,中跨合龙时施加6 000 kN顶推力以改善墩身内力。箱梁纵向计算及横向环框计算表明,本桥采用的双薄壁刚构墩在最不利荷载工况下能满足结构安全使用的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号