首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
首先采用有限元方法对带U肋和带倒T肋的两类钢-UHPC组合桥面板的UHPC层纵、横桥向应力及层间剪应力3个力学指标对比分析,随后建立了UHPC层的横桥向简化计算模型,最后对UHPC层厚度和层间粘结状态进行参数分析.结果表明:① 两类钢-UHPC组合桥面板的UHPC层纵、横向应力及层间剪应力在数值大小、变化规律上均存在差...  相似文献   

2.
以洞庭湖二桥轻型组合桥面板为工程背景,在分析局部轮载对轻型组合桥面板层间剪应力影响的基础上,提出了纵向层间剪应力的简化计算模型——悬臂叠层梁模型,基于悬臂叠层梁模型得到的纵向层间剪应力比有限元值大30.4%;同时修正了基于简支叠层梁模型的横向层间剪应力计算方法,得到的横向层间剪应力解析值比有限元值大1.5%。最后,进一步提出了轻型组合桥面板中栓钉连接件剪力的计算模型,用以指导栓钉连接件的布置设计。  相似文献   

3.
针对钢-UHPC组合桥面板使用传统机械剪力连接件的不足,提出一种装配式钢-UHPC组合桥面板。为给该装配式组合桥面板的设计和应用提供依据,以国内某大跨度扁平钢箱梁桥为依托,将该桥钢桥面板改为装配式钢-UHPC组合桥面板进行试设计,并采用ANSYS建立主梁节段空间有限元模型,对试设计的装配式组合桥面板的受力性能进行研究。研究结果表明:装配式组合桥面板中,UHPC层的横桥向拉应力和粘结层的横桥向剪应力是结构计算的控制指标;在装配式组合桥面板结构中,UHPC层受到的最大拉应力为10.87 MPa,粘结层受到的最大剪应力为0.97 MPa,材料均能满足结构的受力要求;装配式组合桥面板的钢面板最不利构造细节的最大应力幅仅为纯钢桥面板的1/5,说明装配式组合桥面板结构可满足实际桥梁需求且可有效地避免纯钢桥面疲劳开裂等病害。  相似文献   

4.
纵肋上置并形成PBL剪力连接件的钢-UHPC组合桥面板是一种新型桥面结构。该结构采用预制拼装施工,工厂预制钢-UHPC组合梁段,现场进行施工组装,相邻钢梁通过焊接形成一体,而相邻UHPC桥面板则通过现浇UHPC湿接缝连成一体,湿接缝是其薄弱部位。针对该新型结构其湿接缝相关研究较少的问题,该文以某实际工程为背景,完成钢-UHPC组合桥面板湿接缝足尺模型抗弯性能试验。建立Abaqus有限元模型,并采用试验结果校核有限元模型。在此基础上,进行了湿接缝截面模拟方式、钢面板厚度、UHPC层厚度和燕尾榫角度的有限元模型参数分析。对比美国土木工程师协会(ASCE)、《美国房屋建筑规范》(ACI)以及中国《混凝土结构设计规范》(GB 50010—2010)关于构件的刚度计算公式,发现中国规范计算值更接近试验值。基于普通钢筋混凝土梁的抗弯刚度计算公式,结合试验数据进行了参数修正,并用有限元模型结果进行了校核。结果表明:钢-UHPC组合桥面板湿接缝有着优异的延性和刚度;采用摩擦行为模拟湿接缝界面计算成本小且计算效果良好;增加钢板厚度或UHPC层厚度均能有效提高构件刚度和承载力;燕尾榫角度对构件的刚度和承载...  相似文献   

5.
为了解新型大纵肋钢-超高性能混凝土(UHPC)正交异性组合桥面板对传统正交异性钢桥面板的受力性能的改善效果,以港珠澳大桥深水区非通航孔6×110m连续钢箱梁桥为背景,建立全桥有限元模型,对2种桥面方案的静力性能进行对比,建立节段有限元模型,对比2种桥面方案U肋与顶板连接焊缝处的疲劳性能,并分析U肋开口宽度和UHPC结构层厚度对大纵肋钢-UHPC正交异性组合桥面板疲劳性能的影响。结果表明:2种桥面方案下钢箱梁控制点的位移和应力相差不大,所提出的大纵肋钢-UHPC正交异性组合桥面板在中等跨度连续梁桥中具有较好的适用性;大纵肋钢-UHPC正交异性组合桥面板的疲劳性能显著优于传统正交异性钢桥面板;增大U肋开口宽度会导致U肋与顶板连接焊缝应力幅增加,增加UHPC结构层厚度能显著降低U肋与顶板连接焊缝应力幅。  相似文献   

6.
为综合解决正交异性钢桥面板疲劳开裂和铺装层易损的难题,提出了由正交异性钢桥面板与薄层超高韧性混凝土STC组合而成的轻型组合桥面板结构。由于STC层显著提高了桥面板的刚度,因此可对结构进行优化。在带U肋轻型组合桥面板的基础上,提出了带大U肋的轻型组合桥面板方案。将此方案拟应用于某大桥,与原结构相比,用钢量基本不变,而面板-U肋-隔板三者间焊缝总长度减少36%,不仅降低了施工难度,也减少了焊接缺陷,进一步解决了钢桥面板疲劳开裂的问题。采用4种不同的结构体系,建立了钢箱梁节段有限元模型,基于热点应力法,对体系的6个典型疲劳细节进行疲劳验算。结果表明:在大U肋轻型组合桥面板中,6个疲劳细节的应力水平与传统U肋轻型组合桥面板接近,降幅效果基本一致;同时,通过计算说明了大U肋轻型组合桥面板具有良好的横向受力性能,其栓钉也具有足够的抗疲劳性能。为探究此轻型组合桥面板STC层的纵向弯拉性能,开展了负弯矩条带足尺试验,确定大U肋轻型组合桥面板的STC顶层名义开裂应力为24.1 MPa,远超STC层计算最大拉应力10.92 MPa。以上分析初步表明:带大U肋的轻型组合桥面板有较好的疲劳和静力性能。  相似文献   

7.
以某大跨连续钢-混凝土组合梁为工程背景,对钢-UHPC组合梁和钢-C50混凝土组合梁进行整体和局部对比分析。结果表明,整体计算中,钢-UHPC组合梁的刚度略小于钢-C50混凝土组合梁,基本组合下钢-UHPC组合梁中钢梁应力比钢-C50混凝土组合梁下降约27%。局部有限元分析中,频遇组合下钢-C50混凝土组合梁的桥面板已开裂;钢-UHPC组合梁桥面板的最大拉应力作用范围比钢-C50混凝土组合梁小,仅出现在纵肋下缘,且最大拉应力小于UHPC材料的开裂应力。钢-UHPC组合梁可大幅降低结构自重,进一步减小钢梁截面,有望解决大跨度连续组合梁中桥面板开裂问题。  相似文献   

8.
以某全互通立交为工程背景,匝道曲线段采用钢-UHPC组合连续梁结构,通过MIDAS有限元仿真计算分析了UHPC-钢组合桥面板在车辆荷载作用下的受力性能,对比了不同加劲肋对组合桥面板第二体系应力的影响,得到了一些有价值的结论,可以为类似结构设计提供参考。  相似文献   

9.
张欣  李瑜  刘勇 《中外公路》2023,(4):147-152
为优选大跨度自锚式悬索桥钢-UHPC轻型组合加劲梁结构方案,该文以益阳市青龙洲大桥为背景,采用有限元模拟、足尺试验对比验证3种钢-超高性能混凝土(Ultra-High Performance Concrete,UHPC)组合加劲梁方案,对比静力性能、经济特性等指标。结果表明:UHPC华夫板、UHPC无腹筋纵肋板、长栓钉带钢板条的UHPC纵肋板方案均可满足设计需要,长栓钉带钢板条的UHPC纵肋板有更高的抗弯刚度、抗裂安全储备,可达到需求值的5.4倍;桥面板新型T形接缝通过合理预留钢筋实现桥面板零焊接,并有效减少UHPC板内高拉应力区纤维不连续引起的断缝;钢-UHPC轻型组合梁性能优越、适用性高、经济性好,具有良好的应用前景。  相似文献   

10.
以在建洞庭湖二桥为工程背景,建立两种纵肋形式的轻型组合桥面板局部有限元模型,对比分析了两类结构的静力和疲劳性能。结果表明:与传统正交异性钢桥面板相比,轻型组合桥面板的静力和疲劳性能均有一定程度的改善,且全寿命经济效益显著;带开口肋的轻型组合桥面板基本消除了传统开口肋正交异性钢桥面板的纵肋过柔,荷载横向分配能力较差等缺点,应用前景广阔。  相似文献   

11.
钢箱梁桥面铺装体系构造参数对铺装层应力的影响   总被引:1,自引:0,他引:1  
针对广州珠江黄埔大桥的结构形式,对钢箱梁桥面铺装体系进行三维有限元分析,分别研究铺装层厚度、钢桥面板厚度、横隔板间距、纵向加劲肋构造尺寸等钢箱梁桥面铺装体系的构造参数对铺装层最大拉应力、铺装层与钢桥面板层间最大剪应力和铺装层表面最大弯沉值等受力控制指标的影响.用此研究结果可指导珠江黄埔大桥钢箱梁桥面铺装层的设计.  相似文献   

12.
采用有限元分析的结构优化设计方法对钢箱梁桥面铺装体系进行整体优化研究。建立钢桥面铺装体系的有限元模型,选择包括钢板厚度、梯形加劲肋刚度、横隔板间距、铺装厚度等结构参数作为设计变量,建立铺装最大拉应力、铺装与钢板层间最大剪应力、加劲肋挠跨比、钢桥面板最大拉应力等指标的约束条件,采用零阶方法进行优化计算。结果表明,优化设计可以节省材料,降低造价。通过减小梯形加劲肋间距和横隔板间距,增大桥面板厚度和梯形加劲肋高度,可改善铺装的受力状况。  相似文献   

13.
《桥梁建设》2021,51(5)
为评估钢-超高性能混凝土(UHPC)组合桥面体系(通过剪力钉将配筋UHPC薄层与正交异性钢桥面板组合而成的新型桥面结构)的实桥应用效果,以太原摄乐大桥为背景,分别建立80 mm厚SMA铺装层、60 mm厚UHPC+80 mm厚SMA铺装层2种铺装方案有限元模型进行静力性能分析,并对桥面行车道开展静、动载试验研究。结果表明:设置UHPC铺装层能显著提高结构刚度,大幅降低正交异性钢桥面板各构造细节应力;实桥静载测试数据与计算值吻合度较高;当车辆以60 km/h设计速度行驶时,钢-UHPC组合桥面无明显动力冲击效应;钢-UHPC组合桥面体系在实桥上应用效果良好。  相似文献   

14.
以某高速公路跨航道大桥为背景工程,着眼于钢-UHPC组合桥面板参与第一体系受力的关键参数,采用有限元分析软件ANSYS建立全断面节段模型,重点对比钢板和UHPC板厚度的影响、不同加劲肋形式的影响、不同加劲肋间距的影响和箱室中部不同剪力钉间距的影响,为组合桥面板设计优化提供方向。  相似文献   

15.
该文以开口加劲肋正交异性钢桥面铺装体系作为研究对象,建立了包括桥面板和铺装的整体三维有限元分析模型,研究了荷载作用下铺装层的力学特性.分析表明,横向拉应力是开口加劲肋正交异性钢桥面铺装设计的一个重要控制指标;开口加劲肋正交异性钢桥面铺装层问剪应力较大,在铺装结构设计时应注意选择具有较强抗剪强度的粘结材料;开口加劲肋正交异性钢桥面铺装对车辆荷载的应力应变响应具有很强的局部效应.  相似文献   

16.
提出了钢—UHPC轻型组合桥梁结构,以克服传统钢-混凝土组合结构桥梁混凝土桥面板的不足。(1)从基本力学性能和经济性方面对轻型组合梁和传统组合梁进行对比,表明轻型组合梁具有自重低,力学性能优越,施工方便快捷,全寿命经济效益显著等特征,具有较好的应用前景。(2)对等厚板、带纵肋桥面板、华夫桥面板3种结构型式的UHPC桥面板进行有限元分析,结果表明:华夫桥面板竖向位移最小,整体刚度最大;带纵(横)肋桥面板仅纵肋下缘纵向拉应力最大,只需在纵肋下缘配置纵向受拉钢筋;华夫桥面板方案横向拉应力峰值小于较带纵肋方案。(3)基于华夫桥面板方案开展了足尺条带模型试验,正负弯矩试验的初裂应力分别为19.4 MPa和9.1 MPa,华夫桥面板方案能够满足正常使用极限状态的裂缝限值。  相似文献   

17.
正交异性钢桥面新型复合铺装结构研究   总被引:2,自引:1,他引:1  
针对正交异性钢桥面存在的主要破坏形式,提出其铺装层相应的4个主要设计指标:铺装层表面拉应力、铺装层与钢桥面板层间剪应力、铺装层垂直压应变和铺装层剪应力。利用有限元方法,以铺装层与含加劲肋和纵横隔板的正交异性钢桥面局部梁段作为计算对象,进行有限元分析,分析各个设计指标随铺装过渡层模量和铺装层厚度的变化规律。首次提出以水泥基材料为过渡层、焊钉为剪力连接件和SMA13为表层的新型复合铺装系统,并进行了热相容试验、高温复合车辙试验和复合梁疲劳试验等一系列小型试件试验研究。研究结果表明,增大铺装过渡层模量或适当增加铺装层厚度,有助于降低正交异性钢桥面板的应力和应变,使铺装层总体受力越有利;与传统双层沥青混凝土铺装结构相比,新型复合铺装系统性能更优越。  相似文献   

18.
针对钢-UHPC组合桥面板中UHPC的收缩效应,进行了3个不同钢-UHPC面积比的组合桥面板节段足尺试件和UHPC自由收缩试件的养护全过程应变及温度测试,分析了收缩应变发展规律及蒸养温度的影响。基于所得UHPC自由应变、组合桥面板UHPC约束应变和时变止效应方法,求解了养护过程的UHPC弹性模量和组合桥面板收缩应力。结果表明:(1)UHPC总自由收缩约为756×10-6,蒸养的UHPC内部温度愈高,收缩完成愈快;以自收缩时间零点算起,-1 h开启蒸养,龄期5 h的UHPC内部温度达90℃以上,持续蒸养48 h,则龄期5、25、35 h时分别完成总收缩的52%、82%、91%以上,龄期12 d时收缩全部完成;(2)UHPC弹性模量、组合桥面板收缩应力与收缩应变的发展规律基本一致;(3)整个养护过程,钢-UHPC组合桥面板的UHPC收缩应力远小于其当时的轴心抗拉强度,不会产生收缩裂缝,与观测现象相一致;(4)钢-UHPC组合桥面板的UHPC上缘约束收缩拉应力值为2 MPa左右,与静载试验所得钢-UHPC组合桥面板负弯矩的开裂应力较轴心抗拉强度减少值基本一致;(5)基于...  相似文献   

19.
《桥梁建设》2021,51(5)
为研究50 mm厚EA10环氧沥青混凝土铺装层温度对正交异性钢桥面板U肋与顶板构造疲劳致损效应的影响,开展带沥青混凝土铺装层的正交异性钢桥面板足尺节段模型拟静力循环加载试验。分析不同铺装层温度下正交异性钢桥面板顶板的横向应变、挠度以及U肋与顶板构造的局部热点应力响应,在此基础上,对不同铺装层温度下U肋与顶板外侧焊趾疲劳损伤进行研究。结果表明:常温(25℃)条件下,采用沥青混凝土铺装层可降低钢桥面板顶板35.2%的横向应力和10.3%的局部挠度,以及U肋与顶板双面焊构造外侧顶板焊趾区域的应力幅值和疲劳损伤;随着沥青混凝土铺装层温度升高,顶板横向应力、挠度及U肋与顶板双面焊构造外侧顶板焊趾区域的应力幅值、疲劳损伤显著增大,高温(60℃)条件下该区域疲劳损伤度增幅可达41.5%。  相似文献   

20.
为研究一种正交异性钢-超高性能混凝土(UHPC)轻型组合桥面结构,在局部车轮荷载作用下的横向受力性能与横向受力组成,进行了足尺模型静载试验和有限元数值模拟。静载试验对同一足尺模型分别进行了横向简支工况和横向悬臂工况的加载试验,通过边界条件的变化来模拟组合桥面板不同的受力状态,并将试验结果与有限元分析结果进行对比,验证有限元模型的正确性,而后利用有限元模型的分析结果,得到组合桥面板在局部车轮荷载下的横向受力组成。研究结果表明:组合桥面板在车轮荷载作用下,其横向受力局部效应明显,横向应力主要局限于荷载作用区域附近的两道U肋范围内;在车轮荷载影响区域内,由横肋弯曲产生的桥面板整体附加弯矩的影响很小,组合桥面受力以第3体系为主,相应截面弯矩达到了总弯矩的75%,而在其他区域,第3体系受力所占比重迅速衰减,组合桥面受力以第2体系为主;加载至300kN时,组合桥面板受力仍处于弹性阶段,UHPC层顶面最大横向应力达到11.9 MPa仍未开裂,满足设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号