共查询到20条相似文献,搜索用时 15 毫秒
1.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(5):675-697
This paper presents a closed-loop dynamic simulation-based design method for articulated heavy vehicles (AHVs) with active trailer steering (ATS) systems. AHVs have poor manoeuvrability at low speeds and exhibit low lateral stability at high speeds. From the design point of view, there exists a trade-off relationship between AHVs’ manoeuvrability and stability. For example, fewer articulation points and longer wheelbases will improve high-speed lateral stability, but they will degrade low-speed manoeuvrability. To tackle this conflicting design problem, a systematic method is proposed for the design of AHVs with ATS systems. In order to evaluate vehicle performance measures under a well-defined testing manoeuvre, a driver model is introduced and it ‘drivers’ the vehicle model to follow a prescribed route at a given speed. Considering the interactions between the mechanical trailer and the ATS system, the proposed design method simultaneously optimises the active design variables of the controllers and passive design variables of the trailer in a single design loop (SDL). Through the design optimisation of an ATS system for an AHV with a truck and a drawbar trailer combination, this SDL method is compared against a published two design loop method. The benchmark investigation shows that the former can determine better trade-off design solutions than those derived by the latter. This SDL method provides an effective approach to automatically implement the design synthesis of AHVs with ATS systems. 相似文献
2.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(6):521-539
This work presents theory as well as implementation of a modally distributed damping system with electronically controlled variable dampers. The presented approach follows from estimation of vehicle modal motions, through calculation of desirable modal damping forces to distribution of forces on the utilised dampers. The response time of the damping system is first evaluated in a damper test rig. The damping system is then implemented on a 4×2 tractor that is connected to a semi-trailer. Several road tests are performed to investigate how the system work under real driving conditions on a real vehicle, that includes nonlinearities and chassis frame flexibility that are theoretically unaccounted for, together with the limitations that comes with the control algorithm implementation. It is shown that the approach works and that it results in a considerable improvement for both the bounce and pitch modes, i.e. the system enables selecting damping for the sprung mass modes separately. 相似文献
3.
K. -H. Moon S. -H. Lee S. Chang J. -K. Mok T. -W. Park 《International Journal of Automotive Technology》2009,10(4):441-449
Many methods we have been developed to control the rear wheels of a vehicle, but most of them are designed for automobiles
with four wheels. The AWS (all wheel steering) control method for articulated vehicles is currently applied only to Phileas
vehicles developed by APTS, but the control algorithm for this system has yet to be reported. In the present paper, a new
algorithm is proposed after the AWS ECU (electronic control unit) of the Phileas vehicle was tested and analyzed in order
to understand the existing steering algorithm. The new algorithm considers the vehicle geometry, stability of handling, and
safety, and can be easily applied to multi-axle vehicles. In order to verify the AWS algorithm, the trajectory and steering
angles of each algorithm were compared using the commercial software ADAMS. Turning radius, swing-out, and swept path width
were also investigated to determine the turning performance of the proposed algorithm. 相似文献
4.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(3):249-275
In this work, a full-state feedback controller is designed to prevent the oscillatory instability or snaking behaviour of an articulated steer vehicle. To design the controller, first, a linearized model of the vehicle is developed and analyzed to identify the most important uncertain tire parameters with regard to the snaking mode. By using this linearized model, the equations of motion are represented in the form of a polytopic system, which depends affinely on the most important uncertain tire parameters. Then, by solving some linear matrix inequalities, both the Lyapunov and state feedback matrices for the robust stabilization of the vehicle are found. The performance of the resulting controller is evaluated by conducting several simulations based on the linearized model. To verify the results from the linearized model analysis, some simulations are also done by a virtual prototype of the vehicle in ADAMS. The results based on the linearized model are reasonably consistent with those from the simulations in ADAMS. They show that the controller can effectively stabilize the vehicle during the snaking mode in different driving conditions. 相似文献
5.
Nasser Lashgarian Azad Amir Khajepour John Mcphee 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2007,45(3):249-275
In this work, a full-state feedback controller is designed to prevent the oscillatory instability or snaking behaviour of an articulated steer vehicle. To design the controller, first, a linearized model of the vehicle is developed and analyzed to identify the most important uncertain tire parameters with regard to the snaking mode. By using this linearized model, the equations of motion are represented in the form of a polytopic system, which depends affinely on the most important uncertain tire parameters. Then, by solving some linear matrix inequalities, both the Lyapunov and state feedback matrices for the robust stabilization of the vehicle are found. The performance of the resulting controller is evaluated by conducting several simulations based on the linearized model. To verify the results from the linearized model analysis, some simulations are also done by a virtual prototype of the vehicle in ADAMS. The results based on the linearized model are reasonably consistent with those from the simulations in ADAMS. They show that the controller can effectively stabilize the vehicle during the snaking mode in different driving conditions. 相似文献
6.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(5):679-703
A Rollover Index combined with the grey system theory, called a Grey Rollover Index (GRI), is proposed to assess the rollover threat for articulated vehicles with a tractor–semitrailer combination. This index can predict future trends of vehicle dynamics based on current vehicle motion; thus, it is suitable for vehicle-rollover detection. Two difficulties are encountered when applying the GRI for rollover detection. The first difficulty is effectively predicting the rollover threat of the vehicles, and the second difficulty is achieving a definite definition of the real rollover timing of a vehicle. The following methods are used to resolve these problems. First, a nonlinear mathematical model is constructed to accurately describe the vehicle dynamics of articulated vehicles. This model is combined with the GRI to predict rollover propensity. Finally, TruckSim? software is used to determine the real rollover timing and facilitate the accurate supply of information to the rollover detection system through the GRI. This index is used to verify the simulation based on the common manoeuvres that cause rollover accidents to reduce the occurrence of false signals and effectively increase the efficiency of the rollover detection system. 相似文献
7.
Graeme Morrison 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2016,54(11):1601-1628
Various active safety systems proposed for articulated heavy goods vehicles (HGVs) require an accurate estimate of vehicle sideslip angle. However in contrast to passenger cars, there has been minimal published research on sideslip estimation for articulated HGVs. State-of-the-art observers, which rely on linear vehicle models, perform poorly when manoeuvring near the limits of tyre adhesion. This paper investigates three nonlinear Kalman filters (KFs) for estimating the tractor sideslip angle of a tractor–semitrailer. These are compared to the current state-of-the-art, through computer simulations and vehicle test data. An unscented KF using a 5 degrees-of-freedom single-track vehicle model with linear adaptive tyres is found to substantially outperform the state-of-the-art linear KF across a range of test manoeuvres on different surfaces, both at constant speed and during emergency braking. Robustness of the observer to parameter uncertainty is also demonstrated. 相似文献
8.
Qiushi Wang 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2016,54(1):102-123
The Society of Automotive Engineers issued a test procedure, SAE-J2179, to determine the rearward amplification (RA) of multi-trailer articulated heavy vehicles (MTAHVs). Built upon the procedure, the International Organization for Standardization released the test manoeuvres, ISO-14791, for evaluating directional performance of MTAHVs. For the RA measures, ISO-14791 recommends two single lane-change manoeuvres: (1) an open-loop procedure with a single sine-wave steering input; and (2) a closed-loop manoeuvre with a single sine-wave lateral acceleration input. For an articulated vehicle with active trailer steering (ATS), the RA measure in lateral acceleration under the open-loop manoeuvre was not in good agreement with that under the closed-loop manoeuvre. This observation motivates the research on the applicability of the two manoeuvres for the RA measures of MTAHVs with ATS. It is reported that transient response under the open-loop manoeuvre often leads to asymmetric curve of tractor lateral acceleration [Winkler CB, Fancher PS, Bareket Z, Bogard S, Johnson G, Karamihas S, Mink C. Heavy vehicle size and weight – test procedures for minimum safety performance standards. Final technical report, NHTSA, US DOT, contract DTNH22-87-D-17174, University of Michigan Transportation Research Institute, Report No. UMTRI-92-13; 1992]. To explore the effect of the transient response, a multiple cycle sine-wave steering input (MCSSI) manoeuvre is proposed. Simulation demonstrates that the steady-state RA measures of an MTAHV with and without ATS under the MCSSI manoeuvre are in excellent agreement with those under the closed-loop manoeuvre. It is indicated that between the two manoeuvres by ISO-14791, the closed-loop manoeuvre is more applicable for determining the RA measures of MTAHVs with ATS. 相似文献
9.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(3):471-493
This paper presents the application of a nominal control design algorithm for rollover prevention of heavy articulated vehicles with active anti-roll-bar control. This proposed methodology is based on an extension of linear quadratic regulator control for ‘state derivative-induced (control coupled) output regulation’ problems. For heavy articulated vehicles with multiple axles, a performance index with multiple rollover indices is proposed. The proposed methodology allows us to compare the usefulness of various control configurations (i.e. actuators at different axles of the vehicle) based on the interaction of this control configuration with vehicle dynamics. Application of this methodology to a specific heavy articulated vehicle with a tractor semi-trailer shows that a single active anti-roll-bar system at the trailer unit gives better performance than multiple-axle actuators at tractor and trailer together with the single lane change manoeuvre as the external disturbance. Thus, the proposed methodology of this paper not only highlights the importance of the interactions between control and vehicle dynamics in rollover prevention problems but, in fact, proposes a novel technique to exploit the benefits of these interactions judiciously. 相似文献
10.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(12):895-923
The curving performance of a transit rail vehicle model with 21 degrees of freedom is optimized using a combination of multibody dynamics and a genetic algorithm (GA). The design optimization is to search for optimal design variables so that the noise or wear, arising from misalignment of the wheelsets with the track, is reduced to a minimum level during curve negotiations with flange contact forces guiding the rail vehicle. The objective function is a weighted combination of angle of attack on wheelsets and ratios of lateral to vertical forces on wheels. Using the combination of the GA and a multibody dynamics modelling program, A’GEM, the generation of governing equations of motion for complex nonlinear dynamic rail vehicle models and the search for global optimal design variables can be carried out automatically. To demonstrate the feasibility and efficacy of the proposed approach of using the combination of multibody dynamics and GAs, the numerical simulation results of the optimization are offered, the selected objective function is justified, and the sensitivity analysis of different design parameters and different design parameter sets on curving performance is performed. Numerical results show that compared with suspension and inertial parameter sets, the geometric parameter set has the most significant effect on curving performance. 相似文献
11.
Yuping He John McPhee 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2005,43(12):895-923
The curving performance of a transit rail vehicle model with 21 degrees of freedom is optimized using a combination of multibody dynamics and a genetic algorithm (GA). The design optimization is to search for optimal design variables so that the noise or wear, arising from misalignment of the wheelsets with the track, is reduced to a minimum level during curve negotiations with flange contact forces guiding the rail vehicle. The objective function is a weighted combination of angle of attack on wheelsets and ratios of lateral to vertical forces on wheels. Using the combination of the GA and a multibody dynamics modelling program, A'GEM, the generation of governing equations of motion for complex nonlinear dynamic rail vehicle models and the search for global optimal design variables can be carried out automatically. To demonstrate the feasibility and efficacy of the proposed approach of using the combination of multibody dynamics and GAs, the numerical simulation results of the optimization are offered, the selected objective function is justified, and the sensitivity analysis of different design parameters and different design parameter sets on curving performance is performed. Numerical results show that compared with suspension and inertial parameter sets, the geometric parameter set has the most significant effect on curving performance. 相似文献
12.
Y. He J. McPhee 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2005,43(10):697-733
A design methodology for mechatronic vehicles is presented. With multidisciplinary optimization (MDO) methods, strongly coupled mechanical, control and other subsystems are integrated as a synergistic vehicle system. With genetic algorithms (GAs) at the system level, the mechanical, control and other relevant parameters can be optimized simultaneously. To demonstrate the feasibility and efficacy of the proposed design methodology for mechatronic vehicles, it is used to resolve the conflicting requirements for ride comfort, suspension working spaces and unsprung mass dynamic loads in the optimization of half-vehicle models with active suspensions. Both deterministic and random road excitations, both rigid and flexible vehicle bodies and both perfect measurement of full state variables and estimated limited state variables are considered. Numerical results show that the optimized vehicle systems based on the methodology have better overall performance than those using the linear quadratic Gaussian (LQG) controller. It is shown that the methodology is suitable for complex design optimization problems where: (1) there is interaction between different disciplines or subsystems; (2) there are multiple design criteria; (3) there are multiple local optima; (4) there is no need for sensitivity analysis for the optimizer at the system level; and (5) there are multiple design variables. 相似文献
13.
随着全球环境状况日益恶化,世界各国越来越关注汽车尾气的排放,我国环保部要求在2013年7月实施国Ⅳ排放,国V排放预计在其后不久实施,本文首先介绍了全球排放法规及排放污染物的限值要求,然后分析了国V排放采用的技术方案,对采用SCR技术路线达到国V排放的排气后处理系统设计提出了要求。 相似文献
14.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(10):1553-1573
There is a need to further improve driver comfort in commercial vehicles. The variable geometry active suspension offers an interesting option to achieve this in an energy efficient way. However, the optimal control strategy and the overal performance potential remains unclear. The aim of this paper is to quantify the level of performance improvement that can theoretically be obtained by replacing a conventional air sprung cabin suspension design with a variable geometry active suspension. Furthermore, the difference between the use of a linear quadratic (LQ) optimal controller and a classic skyhook controller is investigated. Hereto, an elementary variable geometry actuator model and experimentally validated four degrees of freedom quarter truck model are adopted. The results show that the classic skyhook controller gives a relatively poor performance while a comfort increase of 17–28% can be obtained with the LQ optimal controller, depending on the chosen energy weighting. Furthermore, an additional 75% comfort increase and 77% energy cost reduction can be obtained, with respect to the fixed gain energy optimal controller, using condition-dependent control gains. So, it is concluded that the performance potential using condition-dependent controllers is huge, and that the use of the classic skyhook control strategy should, in general, be avoided when designing active secondary suspensions for commercial vehicles. 相似文献
15.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(1):139-164
Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3 ms and orifice diameters around 8 mm provide the best performance. 相似文献
16.
Arnaud J. P. Miege David Cebon 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2005,43(12):867-884
This paper investigates optimal roll control of an experimental articulated vehicle. The test vehicle and the mathematical model used to design the control strategies are presented. The vehicle model is validated against experimental data from the test vehicle in passive configuration. The initial controller design, performed by Sampson (Sampson, D.J.M. and Cebon, D., 2003a, Achievable roll stability of heavy road vehicles. Proc. Instn. Mech. Engrs, Part D, J. Automobile Engineering, 217(4), 269-287), is reviewed and adapted for the experimental vehicle. The effect of not controlling all the axles on the vehicle is investigated and a variable vehicle speed controller is designed by interpolating between constant speed controllers. Substantial reduction in normalized load transfer is achieved for a range of manoeuvres, both in steady-state and transient conditions. 相似文献
17.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(12):867-884
This paper investigates optimal roll control of an experimental articulated vehicle. The test vehicle and the mathematical model used to design the control strategies are presented. The vehicle model is validated against experimental data from the test vehicle in passive configuration. The initial controller design, performed by Sampson (Sampson, D.J.M. and Cebon, D., 2003a, Achievable roll stability of heavy road vehicles. Proc. Instn. Mech. Engrs, Part D, J. Automobile Engineering, 217(4), 269–287), is reviewed and adapted for the experimental vehicle. The effect of not controlling all the axles on the vehicle is investigated and a variable vehicle speed controller is designed by interpolating between constant speed controllers. Substantial reduction in normalized load transfer is achieved for a range of manoeuvres, both in steady-state and transient conditions. 相似文献
18.
本文针对某重型载货车中冷器散热能力不足的问题,提出了改进方案,改进散热片结构、改变紊流片尺寸及增加中冷器与水箱之间密封,并通过多种验证方式进行验证,从验证结果看,改进效果较明显,为以后中冷器散热能力的改进提出了参考。 相似文献
19.
介绍了装备ABS车辆制动综合性能的评价体系,并探讨了道路试验项目及其评价内容。重点阐述了ABS车辆的 附着系数的测定方法和道路试验项目,提出侧向稳定性作为ABS性能评价项目之一的可行性。 相似文献
20.
模糊评价是现代管理的优化方法之一。文章结合表征高速公路路面使用性能的各项指标,建立了其模糊综合评价体系,并通过算例进行验证。 相似文献