首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Net in situ production and export of dissolved organic carbon (DOC) and nitrogen (DON) have been studied in shelf waters off the Ría de Vigo (NW Spain), as part of a comprehensive hydrographic survey carried out from September 1994 to September 1995 with a fortnight periodicity. DOC and DON correlated well (r=+0.78), the slope of the regression line being 12.0±0.7 mol-C mol-N−1, about twice the Redfieldian slope of particulate organic matter, 6.5±0.2 mol-C mol-N−1 (r=+0.95). Labile DOC and DON accumulated in the upper 50 m during the upwelling season (March–September), mainly after prolonged periods of wind relaxation, when horizontal flows were reduced. This labile material represented 50% and 35% of the total (dissolved+particulate) organic carbon and nitrogen susceptible of microbial utilisation, which assert the key contribution of dissolved organic matter (DOM) to the export of new primary production in the NW Iberian upwelling system. This surface excess in shelf waters appeared to be formed into the highly productive Ría de Vigo (a large coastal indentation) at net rates of 4.4 μM-C d−1 and 1.3 μM-C d−1 in the inner and outer segments of the embayment respectively, and subsequently exported to the shelf. Once in the shelf, simple dilution with the inert DOM pool of recently upwelled Eastern North Atlantic Central Water (ENACW) occurred. Eventually, the DOM excess produced during the upwelling season is exported to the adjacent open ocean waters by the coastal circulation. Conversely, during the unproductive downwelling season (October–February), the lowest DOC and DON levels were recorded and export was prevented by the characteristic downwelling front associated to the seasonal poleward slope current.  相似文献   

2.
3.
Particulate organic matter (POM), nutrients, chlorophyll-a (CHL) and primary production measurements were performed in the upper layer of three different regions (cyclonic, anticyclonic and frontal+peripherial) of the NE Mediterranean Sea in 1991–1994. Depth profiles of bulk POM exhibited a subsurface maximum, coinciding with the deep chlorophyll maximum (DCM) established near the base of the euphotic zone of the Rhodes cyclone and its periphery, where the nutricline was situated just below the euphotic zone for most of the year. Moreover, the POM peaks were broader and situated at shallower depths in late winter–early spring as compared to its position in the summer–autumn period. Under prolonged winter conditions, as experienced in March 1992, the characteristic POM feature disappeared in the center of the Rhodes cyclone, where the upper layer was entirely occupied by nutrient-rich Levantine deep water. Deep convective processes in the cyclonic gyre led to the formation of vertically uniform POM profiles with low concentrations of particulate organic carbon (POC) (2.1 μM), nitrogen (0.21 μM), total particulate phosphorus (PP) (0.02 μM) and chlorophyll-a (0.5 μg/L) in the euphotic zone. Though the Levantine deep waters ascended up to the surface layer with the nitrate/phosphate molar ratios (28–29) in March 1992, the N/P molar ratio of bulk POM in the upper layer was low as 10–12, indicating luxury consumption of phosphate during algal production. Depth-integrated primary production in the euphotic zone ranged from 38.5 for oligotrophic autumn to 457 mg C m−2 day−1 for moderately mesotrophic cool winter conditions.  相似文献   

4.
Flux of bulk components, carbonate- and silicate-bearing skeleton organisms, and the δ15N-isotopic signal were investigated on a 1-year time-series sediment trap deployed at the pelagic NU mooring site (Namibia Upwelling, ca. 29°S, 13°E) in the central Benguela System. The flux of bulk components mostly shows bimodal seasonality with major peaks in austral summer and winter, and moderate to low export in austral fall and spring. The calcium carbonate fraction dominates the export of particulates throughout the year, followed by lithogenic and biogenic opal. Planktonic foraminifera and coccolithophorids are major components of the carbonate fraction, while diatoms clearly dominate the biogenic opal fraction. Bulk δ15N isotopic composition of particulate matter is positively correlated with the total mass flux during summer and fall, while negatively correlated during winter and spring. Seasonal changes in the intensity of the main oceanographic processes affecting the NU site are inferred from variations in bulk component flux, and in the flux and diversity patterns of individual species or group of species. Influence from the Namaqua (Hondeklip) upwelling cell through offshore migration of chlorophyll filaments is stronger in summer, while the winter flux maximum seems to reflect mainly in situ production, with less influence from the coastal and shelf upwelling areas. On a yearly basis, dominant microorganisms correspond well with the flora and fauna of tropical/subtropical waters, with minor contribution of near-shore organisms. The simultaneous occurrence of species with different ecological affinities mirrors the fact that the mooring site was located in a transitional region with large hydrographic variability over short-time intervals.  相似文献   

5.
The potential for carbon export and the role of siliceous plankton in the cycling of C and N was assessed in natural plankton assemblages in the Santa Barbara Basin, California, by examining uptake rates of inorganic carbon, nitrate and silicic acid. In April–August 1997, the concentrations of chlorophyll a, particulate organic carbon, particulate organic nitrogen and biogenic silica were measured twice monthly, and results revealed the occurrence of at least three blooms, the largest in June. Particulate elemental ratios of C, N and Si were similar to ratios of nutrient-replete diatoms, suggesting that they dominated this bloom. Mean integrated rates of carbon, nitrate and silicon uptake during the 4-month study period are similar to other productive coastal and upwelling regions (103, 8.3 and 13 mmol m−2 day−1, respectively). New production rates were twice as high as previously reported in this region and indicate that high rates of new production along eastern boundary currents are not confined to the major coastal upwelling regions. C/NO3, Si/NO3 and Si/C uptake ratios varied widely, and mean integrated ratios were 14±5.4, 1.6±1.0 and 0.12±0.07 (S.D.), respectively. That mean C/NO3 uptake ratio corresponds to an f-ratio of about 0.5 indicating a large potential for particulate export. Based on the average Si/NO3 and Si/C uptake ratios, diatoms could perform all of the primary production and nitrate uptake that occurred during the study; these rates also suggest that export is controlled by diatoms in this system. The mean Si/C biomass ratio was lower than the mean Si/C uptake ratio, consistent with the preferential export of Si relative to C observed in sediment traps in the basin. The study took place during a period of surface-water warming, with nitrate and silicic acid concentrations decreasing throughout the onset of the 1997–1998 El Niño conditions. Although diatoms contributed less to particulate biomass during the low nutrient conditions, high f-ratios (0.33–0.66) were maintained.  相似文献   

6.
Methane (CH4) concentrations were measured in the water column, in sediment porewaters, and in atmospheric air, in the Ría de Vigo, NW Spain, during both the onset (April 2003) and at the end of (September 2004) seasonal upwelling. In addition, CH4 concentration and stable isotopic signatures (δ13CH4) were measured in porewaters, and sediment methanogenesis and aerobic oxidation of CH4 were determined in sediment incubations. Surface water column CH4 (2 m depth) was in the range 3–180 nmol l− 1 (110–8500% saturation) and followed a generally landward increase but with localised maxima in both the inner and middle Ría. These maxima were consistent with CH4 inputs from underlying porewaters in which CH4 concentrations were up to 3 orders of magnitude higher (maximum 350 μmol l− 1). Surface water CH4 concentrations were approximately three times higher in September than in April, consistent with a significant benthic CH4 flux driven by enhanced sediment methanogenesis following the summer productivity maximum. CH4 and δ13CH4 in sediment porewaters and in incubated sediment slurries (20 °C) revealed significant sediment CH4 oxidation, with an apparent isotopic fractionation factor (rc) of  1.004. Using turbulent diffusion models of air–sea exchange we estimate an annual emission of atmospheric CH4 from the Ría de Vigo of 18–44 × 106 g (1.1–2.7 × 106 mol). This estimate is approximately 1–2 orders of magnitude lower than a previous estimate based on a bubble transport model.  相似文献   

7.
Activities of the naturally occurring, short-lived and highly particle-reactive radionuclide tracer 234Th in the dissolved and particulate phase were measured at three shallow-water stations (maximum water depths: 15.6, 22.7 and 30.1 m) in Mecklenburg Bay (south-western Baltic Sea) to constrain the time scales of the dynamics and the depositional fate of particulate matter. Activities of particle-associated (> 0.4 μm) and total (particulate + dissolved) 234Th were in the range of 0.08–0.11 dpm L− 1 and 0.11–0.20 dpm L− 1, respectively. The activity ratio of total 234Th and its long-lived and conservative parent nuclide 238U was well below unity (range: 0.09–0.19) indicating substantial radioactive disequilibria throughout the water column, very dynamic trace-metal scavenging and particle export from the water column at all three stations. For the discussion the 234Th data of this study were combined with previously published water-column 234Th and particulate-matter data from Mecklenburg Bay (Kersten et al., 1998. Applied Geochemistry 13, 339–347). The resulting average vertical distribution of total 234Th/238U disequilibria was used to estimate the depositional 234Th flux to the sediment. There was a virtually constant net downward flux of 234Th of about 28 dpm m− 2 d− 1 leaving each water layer of one meter thickness. Thorium-234-derived net residence times of particulate material regarding settling from a given layer in the water column were typically on the order of days, but with maximum values of up to a couple of weeks. Based on an average ratio of particulate matter (PM) to particle-associated 234Th a net flux of about 145 mg PM m− 2 d− 1 was estimated to leave each water layer of one meter thickness. The estimated cumulative water-column-derived particulate-matter fluxes at the seafloor are higher by a factor of about 2 than previously published sediment-derived estimates for Mecklenburg Bay. This suggests that about half of the settling particulate material is exported from the study area and/or subject to processes such as mechanical breakdown, remineralisation and dissolution. Lateral particulate-matter redistribution and particle breakdown in the water column (as opposed to the sediment) seem to be favoured by (repeated) particle resuspension from and resettling to the seafloor before ultimate sedimentary burial. The importance of net lateral redistribution of particulate material seems to increase towards the seafloor and be particularly high within the bottommost few meters of the water column.  相似文献   

8.
Organic carbon budget for the Gulf of Bothnia   总被引:1,自引:0,他引:1  
We calculated input of organic carbon to the unproductive, brackish water basin of the Gulf of Bothnia from rivers, point sources and the atmosphere. We also calculated the net exchange of organic carbon between the Gulf of Bothnia and the adjacent marine system, the Baltic Proper. We compared the input with sinks for organic carbon; permanent incorporation in sediments and mineralization and subsequent evasion of CO2 to the atmosphere. The major fluxes were riverine input (1500 Gg C year− 1), exchange with the Baltic Proper (depending on which of several possible DOC concentration differences between the basins that was used in the calculation, the flux varied between an outflow of 466 and an input of 950 Gg C year 1), sediment burial (1100 Gg C year− 1) and evasion to the atmosphere (3610 Gg C year− 1). The largest single net flux was the emission of CO2 to the atmosphere, mainly caused by bacterial mineralization of organic carbon. Input and output did not match in our budget which we ascribe uncertainties in the calculation of the exchange of organic carbon between the Gulf of Bothnia and the Baltic Proper, and the fact that CO2 emission, which in our calculation represented 1 year (2002) may have been overestimated in comparison with long-term means. We conclude that net heterotrophy of the Gulf of Bothnia was due to input of organic carbon from both the catchment and from the Baltic Proper and that the future degree of net heterotrophy will be sensible to both catchment export of organic carbon and to the ongoing eutrophication of the Baltic Proper.  相似文献   

9.
Using current meters and systematically repeated vessel mounted ADCP data legs, we describe the role of the semidiurnal and diurnal constituents in the tidal currents and investigate the mesoscale variability of the M2 tidal currents field along three cross-shelf legs over the Galician shelf. We found that the estimated values of the semi-major axes of the main semidiurnal tidal constituents are closely related to those obtained in previous research and that the tidal currents are predominantly semidiurnal. Amplitudes of the M2 and S2 semi-major axes constituents are comparable, and important fortnightly variability should thus be expected in the amplitude of the semidiurnal tidal currents. Vertical profiles of the semi-major axes of the main tidal constituents reveal that, in the absence of stratification, and far from the bottom frictional effects, the tidal currents are mostly barotropic. Over the slope, the tidal ellipses tilt from a north–south orientation toward the northeast–southwest direction and, as we go further into the shelf, their amplitude is increased, a feature that is reasonably explained by the transition from the dynamics of a Poincaré wave offshore to the dynamics of a northward alongshore propagating Kelvin wave over the shelf. The Ría de Vigo exerts a notable influence over the tidal currents, acting as an extension of the shelf and introducing a meridional variation in the orientation of the ellipses from the alongshore direction in the southern straight coast toward the northeast–southwest direction at the latitude of the Rías. Finally, the spatial fitting methods we tried have proved to be successful in VMADCP data detiding in this region.  相似文献   

10.
Observations of a winter upwelling event off Western Iberia shelf/slope in the area of influence of the Western Iberia Buoyant Plume (WIBP) were conducted in February 2000. Spatial patterns and time evolution of the chlorophyll-a (chl-a) biomass are analysed, based on in situ and satellite data. SeaWiFS-derived chl-a concentration L2 products were used to track the chlorophyll front and estimate its westward migration velocity (maximum up to 29 km day−1), as well as to characterize the frontal system and its evolution. A method associating the type of spectral signature of a pixel to the fraction of chlorophyll probed by SeaWiFS enabled the estimation of the chl-a biomass within error intervals. High chlorophyll concentrations (for wintertime) were observed over the shelf and slope, up to large distances to the coast. Due to the WIBP, a shallow Ekman layer developed, being nearly coincident with the stratified upper meters. The transport comprised westward advection and stretching of the plume, with little entrainment with the offshore deep mixed layer waters. The relative enlargement of the total area of the Inside-Front Zone (IFZ) during the upwelling event was roughly accompanied by the maintenance of the average biomass per unit of area, considering the water column up to depths of interest. This suggests that there was a net increase of chl-a biomass inside the water column associated with the IFZ, roughly proportional to the increase in the IFZ area. Retention of phytoplankton in the shallow stratified nutrient-rich waters of the WIBP was a key factor for this increase in chl-a biomass.  相似文献   

11.
A one-dimensional coupled physical–biogeochemical model has been built to study the pelagic food web of the Ligurian Sea (NW Mediterranean Sea). The physical model is the turbulent closure model (version 1D) developed at the GeoHydrodynamics and Environmental Laboratory (GHER) of the University of Liège. The ecosystem model contains 19 state variables describing the carbon and nitrogen cycles of the pelagic food web. Phytoplankton and zooplankton are both divided in three size-based compartments and the model includes an explicit representation of the microbial loop including bacteria, dissolved organic matter, nano-, and microzooplankton. The internal carbon/nitrogen ratio is assumed variable for phytoplankton and detritus, and constant for zooplankton and bacteria. Silicate is considered as a potential limiting nutrient of phytoplankton's growth. The aggregation model described by Kriest and Evans in (Proc. Ind. Acad. Sci., Earth Planet. Sci. 109 (4) (2000) 453) is used to evaluate the sinking rate of particulate detritus. The model is forced at the air–sea interface by meteorological data coming from the “Côte d'Azur” Meteorological Buoy. The dynamics of atmospheric fluxes in the Mediterranean Sea (DYFAMED) time-series data obtained during the year 2000 are used to calibrate and validate the biological model. The comparison of model results within in situ DYFAMED data shows that although some processes are not represented by the model, such as horizontal and vertical advections, model results are overall in agreement with observations and differences observed can be explained with environmental conditions.  相似文献   

12.
Vertical flux of particulate material was recorded with moored sediment traps during 1988/1989 in the Greenland Sea at 72°N, 10°W. This region exhibits pronounced seasonal variability in ice cover. Annual fluxes at 500 m water depth were 22. 79, 8.55, 2.39, 3.81 and 0.51 g m−2 for total flux (dry weight), carbonate particulate biogenic silicate, particulate organic carbon and nitrogen, respectively. Fluxes increased in April, maximum rates of all compounds occurred in May–June, and consistently high total flux rates of around 100 mg m−2d−1 prevailed the summer. The increasing flux of biogenic particles measured in April is indicative of an early onset of algal growth in spring. Small pennate diatoms dominated in the trap collections during April, and were still numerous during the high flux period when Thalassiosira species were the most abundant diatoms. During May–June, up to 22% of the Thalassiosira cells collected were viable-looking cells. The faecal pellet flux increased after the May–June event. Therefore we conclude that the diatoms settled as phytodetritus, most likely in rapidly sinking aggregates. From seasonal nutrient profiles it is concluded that diatoms contribute 25% to new production during spring and 50% on an annual basis. More than 50% of newly produced silicate particles are dissolved above the 500 m horizon. High new production during spring does not lead to a pronounced sedimentation pulse of organic matter during spring but elevated vertical export is observed during the entire growth period.  相似文献   

13.
The annual pattern of vertical particle flux in the Northeast Water (NEW) Polynya was recorded from August 1992 to July 1993 by means of moored time-series sediment traps. A distinct seasonal pattern in sedimentation was observed, with highest flux rates during August–October 1992. During this time 40–70% of the annual total sedimented matter (dry weight, DW) and the components, carbonate, particulate organic carbon and nitrogen (POC and PON), particulate biogenic silica (bPSi) and biogenic matter were recorded: 9.83, 2.04, 1.03, 0.69, 0.14 and 5.55 g m−2, respectively. Microscopic analysis of the particles revealed that diatoms contributed about 10% of the POC flux, but up to 40% of the POC flux originated from the houses and faeces of appendicularians during the period of highest flux rates. In contrast, faecal pellets were only a minor component of sedimenting POC after the opening of the polynya in June 1993. During this period a sedimentation event of Melosira arctica dominated the microscopically recognizable fraction of the POC. Following the low winter values a significant deviation in POC flux in March documented an early onset of plankton growth and a rapid response to the formation of a winter polynya paralleled by a local change in ice conditions. This was supported by the stable nitrogen isotope signature of the sedimented matter, also indicating an early onset of plankton production in the NEW Polynya. However, the overall amplitude of the Δ15N signal in the sinking particles showed only small variations (<4‰) and was significantly below the amplitude observed in sedimented material from the Northern North Atlantic ( 8‰). The composition of the sedimented matter, comprising mainly fast sinking particles (appendicularian houses, faecal peliets and Melosira aggregates) lead us to conclude that sedimentation in the NEW Polynya was spatially heterogeneous.  相似文献   

14.
The evolution of dissolved organic matter (DOM) in a non-axenic batch culture of the marine diatom Thalassiosira tumida was studied by hydrophobic fractionation during a three month experiment. DOM was fractionated with XAD-2 resin into hydrophobic (acid and neutral, “humic”) and hydrophilic fractions. The combined amino acid contents of unfractionated filtered seawater, XAD-fractions and particulate material were determined during the growth, stationary and degradation phases of the culture, and variations related to changes in dissolved organic nitrogen (DON) in XAD-fractions, dissolved inorganic nitrogen, algal and bacterial biomass. XAD-fractionation enabled the discrimination of simultaneously ocurring release and uptake of organic nitrogenous compounds: During the diatom growth there was a net increase of tolal DON concentrations, which was mostly accounted for by the hydrophilic fraction. A concurrent heterotrophic uptake of combined amino acids and other non-amino acid organic nitrogen was discernible by the decrease of their concentrations in the hydrophobic fractions. In the stationary phase, during the prevailing net consumption of total DON, the production of algal exudates could be detected in the hydrophobic fractions, while uptake mainly involved non-amino acid organic nitrogen from the hydrophilic fraction. During the degradation phase, after two months part of the particulate amino acid pool was transformed into hydrophilic DON, which in contrast to the stationary phase, was not adequate for supporting sustained bacterial growth. This suggests that the generation of recalcitrant substances may begin in the hydrophilic fraction of DOM. A slight increase of the hydrophobic acid fraction was indicative of the incipient formation of humic substances. XAD-2 was able to adsorb substances from fast changing DOM pools and thus should be a useful tool in studies concerned with phytoplankton and bacterial dynamics.  相似文献   

15.
In order to study the influence of wind mixing on the spring variability of the plankton production of the north western Corsican coastal area, a one-dimensional (1D), vertical, coupled hydrodynamic/biological model (ECOHYDROMV) is used. A hydrodynamic 1D model of the water column with a kl turbulent closure is applied. The biological model comprises six state variables, representing the plankton ecosystem in the spring period: phytoplankton, copepods, nitrate, ammonium, particulate organic matter of phytoplanktonic origin and particulate organic matter of zooplanktonic origin. The system is influenced by turbulence (expressed by the vertical eddy diffusivity), temperature and irradiance. The model takes into account momentum and heat surface fluxes computed from meteorological data in order to simulate a typical spring atmospheric forcing for the considered area. Results show that primary production vertical structure is characterised by a subsurface maximum which deepens with time and is regulated by the opposite gradients of nitrate concentration and irradiance. Surface plankton productivity is mainly controlled by turbulent vertical transport of nutrients into the mixed layer. The short time scale variability of turbulent mixing generated by the wind appears to be responsible for the plurimodal shape of plankton blooms, observed in the considered area. Furthermore, the model is applied to the study of the spring evolution of the plankton communities off the bay of Calvi (Corsica) for the years 1986 and 1988. In order to initiate and validate the model, time series of hydrological, chemical and biological data have been used. The model reproduces accurately the spring evolution of the phytoplankton biomass measured in situ and illustrates that its strong variability in those years was in close relation to the variability of the wind intensity.  相似文献   

16.
Large-volume sampling of 234Th was conducted to estimate particulate organic carbon (POC) export in conjunction with drifting sediment trap deployments in the northern Barents Sea in July 2003 and May 2005. 234Th-derived POC fluxes averaged 42.3 ± 39.7 mmol C m− 2 d− 1 in 2003 and 47.1 ± 30.6 mmol C m− 2 d− 1 in 2005. Sediment trap POC fluxes averaged 13.1 ± 8.2 mmol C m− 2 d− 1 in 2003 and 17.3 ± 11.4 mmol C m− 2 d− 1 in 2005, but better reflected the transient bloom conditions that were observed at each station within a season. Although 234Th fluxes agreed within a factor 2 at most stations and depths sampled, sediment trap POC fluxes were lower than large-volume POC flux estimates at almost every station. This may represent an under-collection of POC by the drifting sediment traps or, conversely, an over-collection of POC by the large-volume sampling of 234Th. It is hypothesized that the offset between the two methods is partly due to the presence of the prymnesiophyte Phaeocystis pouchetii, which potentially causes a large variation in > 53-μm POC/234Th ratios. Due to the large proportion of dissolved carbon or mucilage released by P. pouchetii, and because it is thought that P. pouchetii does not contribute significantly to the vertical export of biogenic matter in the Barents Sea, the application of large-volume sampling of 234Th may yield relatively high, and possibly inaccurate POC/234Th ratios. Hence, POC fluxes derived from 234Th sampling may be inappropriate and drifting sediment traps might be a more reliable method to measure the vertical export of biogenic matter in regions that have recurrent P. pouchetii blooms, such as the Barents Sea.  相似文献   

17.
One of the important problems in the oceanography of the wind-driven upwelling regions of the Ocean is the investigation of water exchange processes in the coastal zone. Satellite data (thermal and colour imagery) have changed our view on these processes after the relatively recent discovery of cold, chlorophyll-rich, narrow (< 50 km wide) offshore flowing filaments off the west coasts of North America, North and South Africa. On the basis of satellite IR images and oceanographic original and archive data we investigated systems of filaments in the northwest and southwest African upwelling regions. The spatial distribution of filaments was analyzed. It was found that seasonal variability of the filaments' location depends upon the general intensity of upwelling motion along the coast during the year. The main statistical characteristics of filaments were obtained. An example of the three-dimensional velocity structure of the filament was presented. In order to estimate the intensity of cross-frontal exchange process due to filaments, a special procedure was proposed. The values of the velocity of cross-frontal water exchange produced by filaments in these upwelling zones are obtained. It was shown that upwelling filaments play an important role in water exchange between the coastal zone and the open ocean. A non-dimensional parameter which characterizes the permeability of oceanic fronts for water exchange due to mesoscale dynamical structures was introduced and estimated.  相似文献   

18.
19.
We have evaluated the impact of assimilating chlorophyll, nitrate, phosphate, silicate and ammonium into a coupled 1D hydrodynamic ecosystem model (GOTM-ERSEM) in an upwelling influenced estuary. The assimilation method chosen is the Ensemble Kalman Filter (EnKF), which has been demonstrated to improve field estimates of key variables (chlorophyll, nutrients) for bulk algal bloom prediction. The 1D model has been set up for a central station inside the Ría de Vigo (Spain). Data from bi-weekly surveys are used to constrain the model. Temperature and salinity profiles are used to ensure the correct representation of the water structure through a relaxation scheme. Chlorophyll extracts and nutrients at three depths are assimilated sequentially during 1 year simulation (1991). The assimilation period includes episodes of active upwelling and downwelling. All five assimilated variables are successfully constrained and represent a large improvement on the reference simulation (without assimilation). Small divergences can be related to poorly resolved physical processes in the model. The assimilation was further evaluated by comparing observed biomass partitioning with model results. Diatoms accounted for the largest biomass update and the largest improvement in terms of percentage of variance explained (R2). This is particularly significant as they represent the 46% of the yearly integrated observed biomass of the planktonic autotrophs. Nonetheless the R2 value was low for all phytoplankton groups. Bacteria and nanoflagellates showed an improvement with respect to their yearly Root Mean Square (RMS), while the other functional groups worsen or remained unaffected. Chlorophyll assimilation was responsible for most of the impact on the phytoplankton biomass with small contributions from the silicate. It had minor impact on the updates of nutrients which in turn corrected the state variables related to the detrital pool. In this current setting, combined assimilation of chlorophyll and nutrients is not sufficient to produce a skillful simulation of the phytoplankton succession.  相似文献   

20.
Dissolved and particulate phases of carbon (DIC, DOC, POC) and nutrients (DIN, DIP, DSi, DON, DOP, PN) were investigated bimonthly from August 1999 to August 2000 to study biogeochemical dynamics of carbon and nutrients in Tapong Bay, a small semi-enclosed and hypertrophic lagoon in southwestern Taiwan. The lagoon has only a tidal inlet for exchanging water between Tapong Bay and Taiwan Strait, which may result in low water exchange rates and various oxygen-deficient conditions in bottom water of the inner bay during warm seasons. The water exchange time of Tapong Bay ranges from 7 days (summer) to 13 days (winter) with a mean of 10 days. Nutrient dynamics were largely ascribed to allochthonous inputs, biological and exported removals in the lagoon. Diffusion fluxes from sediments to overlying water accounted for only about 7.6% of annual DIN inputs and 1.0% of annual DIP inputs. High primary productivity (89 mol C m−2 year−1) supported by abundant nutrients primarily drove the lagoon into a hypertrophic condition as particulate organic matter was derived mainly from biological production. Excess of DIP appeared to occur throughout the study period in the lagoon. Temperature, solar radiation and turbidity, rather than nutrients, perhaps controlled seasonal variations of primary productivity. The net ecosystem production (NEP) derived from daily changes of DOC and POC inventories was about 6.3 mmol C m−2 day−1 that was close to 6.7 mmol C m−2 day−1 simulated from the biogeochemical modeling. Therefore, the net ecosystem production (NEP) rate of organic carbon estimated from the biogeochemical model was reliable, and the NEP was temporally variable with an annual mean of 5.8 mol C m−2 year−1, implying that Tapong Bay was an autotrophic system. Although calcification proceeded pronouncedly in warm seasons, an invasion of CO2 was significant in this system. In terms of nitrogen budget, the annual nitrogen fixation exceeded the annual denitrification with a magnitude of 1.30 mol N m−2 year−1, which may be supported by the abundance of nitrogen fixation microplanktons in the lagoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号