首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对无人驾驶车辆在极限工况下跟踪控制精度和稳定性均难以保障的问题,提出一种纵横向稳定性综合协调控制方法。首先对无人驾驶车辆在摩擦极限下的速度进行规划,通过纵向加速度前馈和状态反馈控制器实现极限车速下的速度跟随。其次将预瞄前馈与人工势场反馈相结合设计了横向路径跟踪控制器。提出了基于期望与实际横摆角速度偏差的稳定性控制策略,优化纵向控制的驱动力矩。Simulink/Carsim联合仿真结果表明,所提出的纵横向协调稳定控制方法可在极限工况下改善无人驾驶车辆瞬态响应,抑制道路曲率突变处的超调量,减少路径跟随中的稳态误差,提高了无人驾驶车辆的轨迹跟踪精度和弯道运动过程中的横向稳定性。  相似文献   

2.
为了提高线控转向车辆在高速工况下角传动比非线性响应的准确性,分析线控转向的功能指标,推导可变传动比的计算过程,讨论固定横摆角速度增益、固定侧向加速度增益、车速、方向盘输入对前轮转角映射结果的影响,建立基于模糊推理系统的可变传动比策略,针对理想传动比在车辆稳定性控制层面上的不足,采用前轮补偿角的方法进行最终前轮转角的决策。在验证过程中,搭建线控转向整车数学模型,选取典型转向输入工况,结合动力学仿真软件对总体系统设计进行联合仿真对比分析。实验结果分析证明,设计后的传动比策略可以实现方向盘指标需求,降低横摆角速度和质心侧偏角,有效减轻驾驶员的操作负荷,基于改进滑模控制的主动转向策略相比饱和函数指数趋近律滑模控制,超调量降低了9%,提高汽车行驶安全。  相似文献   

3.
为提高智能车辆自主循迹控制的精度,提出了一种基于模糊神经网络控制( FNNC)和神经网络预测( NNP)的智能循迹控制策略。转向控制器的输入量有3个:预瞄点处的横向循迹误差、汽车横摆角速度和侧向加速度。车速控制器的输入量有4个:预瞄点处的面积误差、侧向加速度、汽车侧偏角和转向盘转角。网络训练采用误差反向传播法。仿真与试验结果表明,所设计的循迹控制器通过对驾驶员操作样本的训练,能实现对车辆的车速与转向控制,横向循迹误差和目标车速均比较理想。  相似文献   

4.
采用"魔术公式"轮胎模型,在Matlab/Simulink中搭建了8自由度车辆侧向动力学模型,绘制车辆质心侧偏角-质心侧偏角速度相平面图,并利用双线法划分相平面图稳定区域,结合车辆自身质心侧偏角相轨迹,计算得到车辆极限稳定车速。以极限车速作为控制开关,设计基于质心侧偏角和横摆角速度的模糊控制器,提出了基于补偿横摆力矩的前后轮制动力矩比例分配控制策略,并在多种工况下进行了仿真与模拟驾驶实验。结果表明:利用极限车速作为控制开关设计的控制策略可有效提高车辆稳定性。  相似文献   

5.
设计了一种"前馈+反馈"自适应神经网络控制器,通过直接横摆力矩和前轮主动转向的复合控制来提高车辆横向稳定性。反馈控制器采用PD控制策略,以实际横摆角速度与目标横摆角速度的偏差为输入量;前馈控制器采用RBF神经网络,以反馈控制器的输出为误差进行学习,而实现自适应控制。仿真结果表明,采用上述复合控制,能有效跟踪目标横摆角速度并降低质心侧偏角,提高了车辆在高速急转向时的稳定性。  相似文献   

6.
为实现重型半挂车各工况稳定性精准最优控制,提出了基于线性变参数实时简化模型的重型半挂车稳定性控制策略。该控制策略基于制动系统,采用分层控制方式,运用线性二次型调节器(LQR)方法,选择多个车辆状态为反馈状态,以实现重型半挂车横摆、折叠和侧倾稳定性综合控制;应用遗传粒子群算法,设计综合提高横摆、折叠和侧倾稳定性的优化目标函数,优化控制策略权重系数,以实现重型半挂车各工况稳定性最优控制;最后搭建硬件在环试验台并进行了台架试验。结果表明:采用所提出的控制策略后,牵引车质心侧偏角、牵引车横摆角速度、挂车质心侧偏角和挂车横摆角速度最大值分别改善了38.6%、13.8%、15.8%、8.4%,铰接角最大值改善了5.1%,牵引车侧向加速度、牵引车侧倾角、挂车侧向加速度、挂车侧倾角最大值分别改善了10.4%、15.4%、10.8%、17.7%,表明所设计的控制策略综合提高了重型半挂车普通工况的横摆、折叠和侧倾稳定性,并且实现了极限工况侧翻精准控制,从而避免重型半挂车侧翻。  相似文献   

7.
针对现有自主车队车辆模型不能反映轮胎非线性对车辆稳定性的影响问题,本文中利用其有效性已得到验证的5自由度车辆模型(纵向速度、侧向速度、横摆角速度、前轮转动角速度和后轮转动角速度),分别采用线性和非线性轮胎模型,分析不同初始跟随车速条件下,自主车队系统的动力学特性和稳定性。结果表明,轮胎的非线性严重影响高速跟随行驶中自主车队系统的稳定性,并导致跟随行驶车辆的失稳。  相似文献   

8.
提出了一种融合预瞄特性的智能电动汽车稳定性前馈+反馈控制方法。建立车辆预瞄模型,通过汽车在环境感知时的前视行为,引入道路曲率作为车辆动力学特性的影响因素。基于在前视信息指导下的车辆位姿变化,根据道路附着能力和车速指数模型描述期望纵向车速,建立轮胎侧偏刚度补偿的稳定性前馈控制方法。同时,采用模型预测控制(MPC)设计稳定性反馈控制律,根据车辆的预瞄信息自适应调整预测模型参数和预测时间,消除前馈控制误差及路面扰动等不确定性因素带来的影响。研究结果表明,本文提出的控制策略下汽车质心侧偏角、横摆角速度和侧向加速度小,且跟踪精度更高。仿真试验中,相比于无控制、MPC反馈控制与前馈+定参数MPC反馈控制,本文提出的控制策略在双移线工况1下质心侧偏角峰值分别减小了41.3%、28.9%和10.0%,横摆角速度峰值分别减小了18.0%、6.7%和2.0%,双移线工况2下质心侧偏角峰值分别减小了27.2%、8.7%和8.0%,横摆角速度峰值分别减小了16.9%、12.9%和8.6%;相比于MPC反馈控制与前馈+定参数MPC反馈控制,在蛇行工况1下,质心侧偏角峰值分别减小了49.8%与34.8%,横摆角速...  相似文献   

9.
在分析车身侧倾对转向系统影响的基础上,对转向系统通常采用的参考模型进行修改,并探讨了轮胎侧偏刚度和车速对参考模型横摆角速度的影响.得出结论为,轮胎侧偏刚度对参考模型的横摆角速度增益有较大影响:前轮侧偏刚度的降低使横摆角速度大致成比例地减小.利用最优前馈和反馈控制方法,提出了四轮转向变增益跟踪控制策略.采用非线性半经验轮胎模型的仿真结果表明,所提出的变增益跟踪控制策略对车辆的操纵稳定性有重大改善.  相似文献   

10.
王书伟  刘伟燕 《天津汽车》2011,(3):43-44,54
ADAMS软件提供了柔性体模块,可真实地模拟物体的运动,文章以某轿车为研究对象,利用ADAMS仿真软件建立了带有弹性下控制臂悬架的整车模型。选择开环转向事件里的转向阶跃输入进行仿真分析,在后处理中对横摆角速度、车速、侧向加速度和纵向加速度进行分析。结果表明,柔性体悬架模型比多刚体悬架模型对车身的横摆角速度、侧向加速度、纵向加速度以及速度等具有更好的抑制作用,有利于提高汽车操纵稳定性。  相似文献   

11.
为了防止车辆偏离车道导致交通事故的发生和避免车道偏离防避系统(Lane Departure Avoidance Systems,LDAS)对驾驶人行为不必要的干预,提出基于中心区操纵特性阈值法和基于D-S(Dempster-Shafer)证据理论的车辆偏离车道驾驶人意图识别准则,并运用CarSim/Simulink联合仿真对比2种识别准则的有效性。建立转向盘角速度为输入的车路模型,设计LDAS滑模转向控制器,基于预瞄点的侧向偏移量和横摆角速度设计LDAS的期望横摆角速度观测器,并与基于道路曲率和预瞄点侧向偏移量的期望横摆角速度的LDAS进行性能对比。运用相平面法确定保证LDAS车辆稳定性的前轮转向角最大值,并基于CarSim/LabVIEW RT硬件在环试验平台验证基于BP神经网络训练获得D-S证据理论的初始概率赋值的驾驶人意图决策算法的有效性。结果表明:所提出的识别准则能够及时识别车辆偏离车道时的驾驶人意图,为LDAS控制器介入赢得了宝贵的时间,所设计的期望横摆角速度观测器具有很好的稳定性,所提出的方法能够有效避免车辆偏离车道。  相似文献   

12.
设计了基于横摆角速度与质心侧偏角的联合滑模变结构控制策略,基于Car Sim和MATLAB软件建立了电动轮汽车整车模型和整车控制模型,对电动轮汽车的驱动DYC系统进行了仿真分析。结果表明,设计的联合滑模变结构控制器具有良好的鲁棒性,能较好地控制车辆的横摆角速度和质心侧偏角;所采用的轴载比例分配算法对车辆的纵向加速度影响较小,既实现了车辆横向稳定性的控制,同时提高了车辆的舒适性。  相似文献   

13.
为了提高4×4越野车弯道高速行驶的稳定性,计及前轮定位参数的影响,建立了转向行驶时整车4自由度动力学模型;计算了车辆在不同车速下,不同前轮主销后倾角时的横摆角速度瞬态响应.结果表明,车速提高时,横摆角速度超调量增大,稳定时间延长;而在适当范围内增大主销后倾角,可减小横摆角速度超调量和稳定时间,改善高速行驶车辆的转向稳定性.同时说明主销后倾角对横摆角速度超调量有阻尼作用.  相似文献   

14.
研究了轮胎的非线性特性、侧向力与垂直载荷耦合特性对车辆操纵稳定性的影响,发现当侧向加速度较大时,4WS对横摆率的控制作用急剧减弱,而通过主动悬架的控制能有效提高横摆率的响应.提出了基于横摆率跟踪控制的4WS和主动悬架的协调控制方法,对前后轴主动悬架控制力进行了分配,提高了大侧向加速度时的横摆率响应.转向盘角阶跃输入的仿真分析表明,该方法可获得优于4WS和主动悬架简单叠加时的综合性能.  相似文献   

15.
为提高中低附着系数路面下车辆的侧向稳定性,构建了基于模型预测控制(MPC)的主动前轮转向(AFS)及直接横摆力偶矩(DYC)协同控制器,其决策层基于MPC获取附加横摆力偶矩,执行层由AFS和DYC控制协同修正前轮转角或施加轮缸制动压力。在双移线(DLC)工况下仿真验证了该策略的有效性,结果表明:路面附着系数为0.25时,车身侧偏角和横摆角速度分别稳定于-3.5°~3.5°和-16~16 (°)/s内,纵向车速稳定于88 km/h左右;路面附着系数为0.40时,纵向车速、车身侧偏角与横摆角速度等稳定性指标均有明显改善。综合分析表明,该AFS-DYC协同控制策略可显著改善中低附着系数条件下的操纵稳定性。  相似文献   

16.
运用多体动力学软件ADAMS/Car建立某半挂汽车列车虚拟试验整车模型,参照汽车操纵稳定性试验方法对该半挂汽车列车进行转向瞬态响应试验仿真,分析得到了半挂汽车列车在不同速度下的侧向加速度和横摆角速度响应、转向瞬态响应试验的极限车速及半挂汽车列车安全运行的最大侧倾角,为半挂汽车列车的设计和使用提供理论依据.  相似文献   

17.
吴俊陈刚 《汽车工程》2018,(10):1215-1222
为实现不同驾驶工况下精确的车速与轨迹跟踪,提出了一种驾驶机器人车辆多模式切换控制方法。通过分析驾驶机器人操纵自动挡车辆踏板与转向盘的运动,建立了驾驶机器人加速与制动机械腿和转向机械手的运动学模型和车辆纵横向动力学模型。在此基础上,设计了加速/制动机械腿切换控制器、模糊PID/模糊PID+Bang-Bang车速切换控制器和模糊PID/模糊PID+Bang-Bang转向切换控制器。加速/制动机械腿切换控制器以目标车辆加速度为切换规则,协调控制加速和制动机械腿,车速切换控制器以车速误差作为Bang-Bang控制器的模式决策准则和模糊PID控制器的输入,转向切换控制器以轨迹跟踪侧向误差作为Bang-Bang控制器的模式决策输入,并以当前与下一个控制时刻横摆角速度之差作为模糊PID控制器的输入。仿真和试验结果验证了所提出方法的有效性。  相似文献   

18.
为实现不同驾驶工况下精确的车速与轨迹跟踪,提出了一种驾驶机器人车辆多模式切换控制方法。通过分析驾驶机器人操纵自动挡车辆踏板与转向盘的运动,建立了驾驶机器人加速与制动机械腿和转向机械手的运动学模型和车辆纵横向动力学模型。在此基础上,设计了加速/制动机械腿切换控制器、模糊PID/模糊PID+Bang-Bang车速切换控制器和模糊PID/模糊PID+Bang-Bang转向切换控制器。加速/制动机械腿切换控制器以目标车辆加速度为切换规则,协调控制加速和制动机械腿,车速切换控制器以车速误差作为Bang-Bang控制器的模式决策准则和模糊PID控制器的输入,转向切换控制器以轨迹跟踪侧向误差作为Bang-Bang控制器的模式决策输入,并以当前与下一个控制时刻横摆角速度之差作为模糊PID控制器的输入。仿真和试验结果验证了所提出方法的有效性。  相似文献   

19.
建立了描述汽车横摆、侧向、纵向、垂向、侧倾和4个车轮运动的汽车模型,利用卡尔曼滤波状态观测器对前后轴悬架力进行估计,采用遗忘因子的递推最小二乘估算法对质心位置进行估计,并用估计的质心位置来修正参考模型得到的横摆角速度和质心侧偏角的期望值,最后设计了ESP系统的参数自整定模糊PID控制器,并进行了仿真和硬件在环试验,结果表明,考虑质心位置变化的ESP控制器的效果比未考虑的控制器好,使汽车在高速转向制动行驶时具有更好的横向稳定性。  相似文献   

20.
文中建立了车辆转向运动的简化模型,利用模糊控制策略,通过差动制动产生附加力矩来控制车辆的横摆运动,同时以车辆侧偏角和横摆角速度为反馈输入变量来校正消除系统误差,设计了车辆模糊控制系统。并对控制系统在不同车速下进行了仿真分析。仿真结果表明,施加控制的车辆与无控制的相比,横摆角速度与侧偏角的输出稳态值减小,超调量降低,改善了车辆的横向稳定性。特别在高速情况下,控制效果更加明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号