首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着我国基础建设技术的不断创新,桥梁建设更是向着越来越大、越来越重、越来越高的方向发展。转体桥梁施工技术的发展更是突飞猛进,转体重量从最早的几千吨已发展到现在的几万吨。与此同时,转体技术核心—球铰也正在向平铰转化。球铰施工技术经过近年的发展现已非常成熟,各项施工技术难题也已得到很好的解决。平铰作为新型施工技术,正在被开发应用,平铰下混凝土施工密实度一直是一大技术难题。本论文主要就平铰施工过程中针对平铰底面混凝土密实性差展开研究,为类似工程施工提供参考依据。  相似文献   

2.
桥梁转体施工整个工程最重要的核心设备是转动球铰,转动球铰承担着整个桥体旋转过程中载荷传递的重任,转动球铰制作和操控精度,事关整个工程质量甚至工程施工的成败。对桥梁T型悬臂转体施工的钢球铰节点应力进行专题研究。  相似文献   

3.
<正>近日,宁波市轨道交通4号线上跨杭深、萧甬铁路工程15 000 t转体主桥球铰成功安装,标志着国内首例小曲径大偏心复杂刚构转体桥正式进入实质性施工阶段。球铰安装为该转体桥关键技术节点,其直径4 m,自重14.4 t,采用整体加工成型,较以往拼装式有较高的技术难度,曲面打磨精度达到6.3μm,相当于一根头发丝的1/10,球铰安装完成后将在其上部建造重达15 000 t的刚构桥梁,球铰的自重与承重比例达到1∶1 042,在施工中所有安装平面的高程误差  相似文献   

4.
近年来,桥梁平转施工技术的实践水平迅猛发展,但该技术的设计理论水平相对落后。基于钢制球铰与混凝土球铰不同的构造特点,分别给出了适用于各自受力机理的应力解答。以混凝土拉应力不超限为控制原则,提出了钢质球铰和混凝土球铰有效支承半径的统一计算公式。最后提出了平转施工桥梁中球铰设计的一般方法,经与实际工程中球铰设计参数对比,表明所提方法是合理可靠的。以期为今后相关工程提供参考与借鉴。  相似文献   

5.
转动体系在转体施工过程中受力集中且往往存在偏心现象,其受力安全性直接攸关转体施工的成败,分析转动体系受力状态对确保桥梁转体施工具有重要意义。在明确桥梁转体工程转动体系常见受力状态的基础上,以实际工程为背景建立转动体系局部仿真模型,对上转盘、下转盘、球铰及球铰加劲肋进行详细的受力分析。结果表明:无偏心状态球铰接触应力由内向外先增大后减小,最大接触应力出现在球铰边缘附近;各部分Von Mises应力及下转盘竖向正应力随偏心程度的加剧呈一侧增大一侧减小;下转盘偏心方向两侧的混凝土竖向正应力差值随偏心程度的增大而增大,工程上可据此估计不平衡力矩。  相似文献   

6.
为得到桥梁转体施工中球铰静摩擦系数的准确值,对其计算方法进行研究。根据球铰法不平衡称重试验测试球铰摩阻力矩,对桥梁转体施工的不平衡称重进行数学分析,建立新的球铰摩阻力矩计算数学模型,推导了球铰摩阻力矩和静摩擦系数计算公式。采用常规公式和新公式对2个工程实例称重试验过程中的静摩擦系数进行了计算,并与实测值进行比较,对比结果表明,在称重试验过程中,按照常规公式计算的静摩擦系数与实际牵引力反推计算的静摩擦系数存在较大的偏差,按新公式计算的静摩擦系数与实际牵引力反推计算的静摩擦系数吻合较好,验证了新公式的准确性。对桥梁转体施工中球铰静摩擦系数设计取值提出了合理化建议。  相似文献   

7.
针对平转法转体桥梁转体球铰常规设计法忽略不平衡力矩造成球铰设计安全储备不足或后期转体困难等问题,提出考虑不平衡力矩作用下的转体球铰设计方法,以成都某T构转体桥为背景进行研究。采用MIDAS FEA软件建立转体球铰部分有限元模型,分析钢制球铰半径改变对结构受力的影响规律;然后推导不平衡状态下球铰应力计算公式,通过转体结构的受力关系,根据撑脚是否着地的设计目标,按结构对称与非对称,给出球铰半径的确定方法,进而确定启动力矩等其他设计参数;最后结合转体桥梁工程实例验证该方法的适用性及准确性。结果表明:考虑不平衡力矩作用下的球铰设计方法适用于当前不同转体工程实例,其适用范围更广、安全性更好;转体球铰设计时应预先考虑不平衡力矩对球铰设计的影响。  相似文献   

8.
《公路》1965,(11)
我省近年来装配式钢筋混凝土小跨径桥梁发展较快,但10米以上大中跨径的桥型转构仅有“ T”梁一种。“T”梁构件重大,造价高,安装困难,桥下净空小。为了解决平原地区一般通航河道(河面宽15米至25米左右)满足通航和排灌的要求,采用较大跨径单跨过河,同时简化下部结构,降低造价,节约材料,在各级领导的指示鼓励下,试建成功净跨15米的装配式钢筋混凝土三铰框架式坦拱桥。在此基础上,嘉兴县交通局桥梁队又创造了净跨15米的装配式钢筋混凝土八字形拱桥。兹将这两种桥型的特点和施工经验介绍于后:  相似文献   

9.
为对T形刚构转体桥转体前的平衡配重提供依据,对该类桥梁转体时的不平衡力矩预估方法进行研究。根据偏心受压构件应力分布规律,推导出该类桥梁基于球铰下应力差的不平衡力矩理论计算公式,进而运用通用有限元软件建立球铰细部分析模型,对不平衡力矩的数值进行预估,并结合称重试验实测数据,对比分析预估方法的可行性和预估数值的工程精度。通过工程实例分析表明:基于应力差法预估T形刚构桥转体时的不平衡力矩,方法简便可行,且预估数值具有足够的工程精度,可根据预估结果对该类桥梁转体进行平衡配重。  相似文献   

10.
太原市北中环涧河路立交分南、北两幅,上跨铁路处分别为(54+57)m、(67+67)m连续刚构桥,其中箱形T构按全预应力构件设计,以墩底同步转体方式施工,转体重量超万吨。转体结构由下转盘、球铰钢销轴、上转盘、撑脚、钢板滑道、千斤顶反力座等构成。在下承台施工时预埋转体结构的牵引力座、反力座、滑道支架等的钢筋和钢构件,分3次浇筑下转盘混凝土,吊装并精确定位上球铰;采用定型钢模板、塔吊施工主墩;双幅T构平行铁路线同步预制,通过竖向预应力完成T构墩台锚固、墩梁锚固;对T构进行不平衡力矩测试,经配重、试转后,双幅T构均采用2台QDCL200型穿心式连续提升千斤顶同步转体,转体到位后进行后浇段和球铰封固作业。  相似文献   

11.
平转施工桥梁采用的球铰有钢制球铰和混凝土球铰两种形式,通过对其构造和受力特性分析,本文认为控制球铰设计的破坏模式为局部承压下的横向受拉破坏,进而提出了以有效支承半径为控制指标的球铰设计理论,统一了钢制球铰和混凝土球铰的设计方法和流程。通过对钢质球铰和混凝土球铰各自的受力情况进行理论分析和计算推导,给出了有效支承半径的准确计算公式,用于指导球铰几何尺寸拟定和相关参数取值。最后,将本文方法应用于实际工程,数据吻合性较好,证明本文方法合理可靠,具有较强的指导意义。  相似文献   

12.
京张高铁土木特大桥采用(60+100+60)m预应力混凝土连续梁跨越既有大秦铁路,该桥24号、25号墩墩顶98m范围内梁体采用墩顶水平转体施工。沿平行于大秦铁路线方向,施工24号、25号墩顶转体部分梁体,在墩帽、0号块施工时安装转体系统;在标准梁段施工后拆除施工临时结构,安装牵引系统;进行梁体试转后在"要点"时间内进行正式转体,将梁体转动至设计平面位置;采用支架现浇法施工边跨合龙段,边跨合龙后进行球铰体系转换、安装永久支座,将梁体变成简支单悬臂结构;最后施工中跨合龙段,完成连续梁施工。  相似文献   

13.
结合分析以往桥梁支座施工后留下的隐患,拉萨河特大桥支座采用锚栓孔灌注环氧树脂砂浆,底板位能压浆的安装方法。介绍针对本桥专门设计的铰轴钢支座和铰轴滑板钢支座施工方法。  相似文献   

14.
由于桥梁水平转体施工的误差极易造成转体墩两侧梁体重量不平衡,对转体球铰产生不平衡力矩,使桥梁在转体过程中可能发生倾覆,故转体前应对梁体进行平衡称重试验。从理论上对球铰结构的不同受力阶段进行力学分析,推导出桥梁转体球铰平衡受力原理,结合工程实例,开展了平衡称重试验测试方法研究。实践证明,以上方法测试精度较高,成本较低,可以保证桥梁转体过程的平稳性和安全性。  相似文献   

15.
由于桥梁水平转体施工的误差极易造成转体墩两侧梁体重量不平衡,对转体球铰产生不平衡力矩,使桥梁在转体过程中可能发生倾覆,故转体前应对梁体进行平衡称重试验。从理论上对球铰结构的不同受力阶段进行力学分析,推导出桥梁转体球铰平衡受力原理,结合工程实例,开展了平衡称重试验测试方法研究。实践证明,以上方法测试精度较高,成本较低,可以保证桥梁转体过程的平稳性和安全性。  相似文献   

16.
<正> 近年来,不独在国外,而且也在国内,公路和城市桥梁设计和施工技术均有很大的发展。大跨度预应力混凝土桥梁采用分段悬臂浇筑和预制节段拼装的为数愈来愈多。因为这类施工方法有其独特的优点,可省去大量支架,避免深水施工,经济效果十分显著。配合悬臂施工法出现的预应力混凝土桥,早期大都是采用在跨中设铰的T型刚构,随后人们发现它存在不少缺点。由于高速公路的迅速发展,对行车要求也愈来愈高,所以少设缝的连续梁和其它超静定结构的采用也日益增多。本文拟从桥梁设计和施工的角度谈谈预应力混凝土梁桥体系从跨中设铰向连续结构演变的过程。  相似文献   

17.
《公路》2021,(4)
转体铰是转体施工中的核心部件,目前使用最多的转体铰是平铰和球铰,选择和设计合理的转体铰对保证工程质量和节省工程成本具有重大的意义[1]。某跨铁路转体斜拉桥,其转体重量约为8万吨,远远超过了已有的工程实践。文章以该大桥项目为工程背景,主要通过平铰和球铰物理特性的比较,以及预应力混凝土和钢材两种转体铰材料的比选,选择合理的转体铰类型和材料进行设计分析,并通过有限元分析软件Midas Civil来分析转体铰的强度和刚度是否满足承载要求,为本工程超大吨位转体施工选择和设计合理的转体铰提供依据。  相似文献   

18.
为了保证转体施工的质量、进度和使用的安全性,采用RPC(活性粉末混凝土)球铰。对比了混凝土球铰、钢球铰、RPC球铰之间的优劣性,并验证了其安全性。以实际的工程为例,分析了RPC球铰在转体施工中的应用过程。结果表明:工程中使用的RPC球铰承载力大、加工工序简单、成本投入小,在保证转体施工的质量、进度和施工安全性方面都有积极的作用。  相似文献   

19.
沈晓松 《公路》2002,(10):50-54
丫髻沙大桥是国内同类型桥中首座采用竖转加平转施工的桥梁,介绍转体施工测量控制过程及控制成果。  相似文献   

20.
以往转体桥球铰受力分析均基于《公路桥涵施工技术规范》,即简化为平面来进行协调接触应力计算,其转体过程中转动系统的抗倾覆能力由球铰的竖向摩阻力矩提供。文中基于非赫兹接触理论进行球铰接触应力的计算,进而推导球铰的抗倾覆力矩,并通过与实际测量结果与计算倾覆力矩的比较,得出相对于《公路桥涵施工技术规范》的简化算法,基于非赫兹接触理论下转体施工的桥梁抗倾覆能力算法的优越性,结果显示该算法的精度较基于简化算法的计算精度更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号