首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
肇庆西江特大桥主桥为5×144m连续钢桁梁公铁两用桥,该桥于2015年10月15日遭受采砂船舶碰撞,造成第4孔第5个节间钢桁梁杆件严重变形,危及铁路行车安全。根据构件变形及受损状况分析,确定采用拆除上游侧严重受损的纵梁,利用鱼腹式钢纵梁临时代替,暂时保留下游侧轻微受损纵梁的临时加固方案对铁路桥进行快速抢修加固,并在快速抢修后进行行车试验。结果表明,桥梁满足列车通行要求,实现了铁路线快速抢通。在铁路快速抢通后,利用"天窗点"时段更换铁路下平联及纵梁,对下弦杆进行局部冷矫正及补强,完成永久加固修复后通过行车试验测试桥梁运营的各项动力性能。结果表明,各项指标均符合规范要求,满足列车正常运营需求。  相似文献   

2.
缅甸卑谬依诺瓦底江大桥的上弦杆为钢箱杆件,本文介绍了该钢箱杆件的制造工艺及不需焊后矫正就能达到规范要求的变形控制措施。  相似文献   

3.
《公路》2015,(5)
钢筋混凝土桁架拱桥兼具桁架桥自重轻和拱桥结构受力合理的优点,曾一度在我国广泛应用,但随着时间推移,其中许多桥梁已面临加固的需求。以某钢筋混凝土斜杆桁架拱桥为例,分析了其典型的结构病害与不足,通过建立桁架拱桥有限元模型,计算不同杆件内力,分析了各类杆件的受力特征;针对杆件不同受力特征优化提出了针对性的加固措施。对受拉为主的内倾斜杆,在其内外两侧纵向粘贴CFRP布进行抗拉加固;对受压为主的外倾斜杆,在其表面环向粘贴CFRP布进行抗压增强;对受弯为主的上弦杆及跨中实腹段,在其截面受拉侧纵向粘贴CFRP布,提高截面抗弯承载能力;对截面薄弱、承受压力及一定弯矩的下弦杆,采用增大截面法进行加固,增大其截面承载力与截面刚度;同时,给出了横系梁、微弯板、铺装层的加固处理方法。  相似文献   

4.
沪通长江大桥主航道桥为主跨1 092m的双塔三索面斜拉桥,采用3片"N"形主桁结构,钢桁梁采用整节段架设方案,节段内焊接、节段间栓接的组合连接方式。为确保钢桁梁制孔精度并消除后续焊接收缩影响,通过对杆件状态钻孔、桁片或节段状态钻孔2种方案比选,确定了在杆件状态钻孔并配合节段连续匹配制造的总体方案。钻孔时,普通箱形、工形杆件采用单龙门数控钻床钻孔;整体节点杆件采用双龙门三维数控钻床钻孔,对于无法使用双龙门三维数控钻床两端同时钻孔的上弦杆采用双龙门三维数控钻床配合U形样板钻孔。实践表明,该控制技术有效保证了制孔精度。  相似文献   

5.
为解决厦门至深圳客运专线榕江特大桥主跨高空悬臂拼装架设过程中局部杆件承载力不足且需要加强杆件较分散地分布于全桥的问题,根据钢桁梁桥的连接特点,采用一种新型的临时加强措施.通过建立全桥各施工阶段有限元模型,计算各杆件受力情况及结构整体稳定性,根据杆件受力情况决定对受力不利杆件采用以下加强措施:对薄弱斜腹杆附加一T形截面杆件,对较薄弱的下弦杆附加一H形截面杆件,加强杆件和被加强杆件共用螺栓连接副.该加强措施具有可由工厂统一加工、易安装且方便拆除,加强杆件与主桁结构协同工作性能较好等优点.  相似文献   

6.
蒙华铁路洞庭湖特大桥主桥为主跨406m的三塔斜拉桥,主梁采用钢箱-钢桁组合结构。其中,下部钢箱梁宽21m,中心处梁高2.5m;上部钢桁梁采用华伦式布置,节间长14m,桁高12m。该桥主梁采用"先箱后桁"的方案施工,先安装下部钢箱梁,钢箱梁合龙后,在其顶面分组安装钢桁梁。边跨钢箱梁采用顶推法架设;主跨钢箱梁采用悬臂拼装法架设,钢箱梁节段利用300t架梁吊机整体吊装,在主跨跨中采用主动合龙方式合龙。上部钢桁梁杆件采用上弦杆制造长度修正、分组架设(5个节间为1组)、多个调整口合龙等技术施工,完成钢桁梁杆件拼装,并实现精确合龙。  相似文献   

7.
沪通长江大桥主航道桥为主跨1 092m双塔三索面公铁两用斜拉桥,主桁采用"N"形桁,由上、下弦杆以及斜、直竖杆构成,弦杆与斜竖杆焊接连接,相邻2个主桁之间弦杆采用高强度螺栓连接。主桁采用杆件→主桁(块体)→整体节段的制造工艺。主桁上弦杆制造时,采用分段接料以及制定合理的组焊顺序确保杆件线形;锚箱制造采用了先组焊后整体机加工工艺;上弦杆箱体两端高强度螺栓孔采用双龙门数控钻床钻制;主桁拼装中采用单片拼装和连续匹配拼装技术。首个整体节段在连续匹配过程中高强度螺栓孔重合率100%,外形尺寸、安装精度、制造线形完全符合制造规范要求。  相似文献   

8.
结合某大跨度箱-桁结合梁斜拉桥"先箱后桁"的施工方法,研究了上下弦杆纵向变形差大、杆件接头多、受制造误差影响大的施工难点。针对纵向变形差问题,通过研究杆件压缩量分布,对各上弦杆进行尺寸补偿,以确保理论上上弦杆满足零应力安装要求;同时,通过对杆件安装过程中的变形进行有限元分析,提出了简捷有效的变形调整措施;此外,提出了"分组安装、组间设预留口"的施工思路,并通过误差累积分析及调整措施比对,确定了合理的杆件分组安装方案。  相似文献   

9.
为研究重庆曾家岩大桥加劲弦与上弦杆连接处特殊节点的静力性能,开展多杆件节点缩尺模型试验设计。为了确定板桁结合悬索加劲钢桁梁桥特殊节点节段模型合理的边界模拟和加载方式,将全桥多尺度有限元模型中得出的特殊节点各杆端截面的内力,采用几何约束和力边界在主桁平面内进行模拟,使得节段模型能较为准确地模拟特殊节点关键部位的应力分布规律。根据试验条件选定1∶2.5为试验模型的缩尺比例,进而确定静载试验荷载及加载方案;根据试件的荷载及反力,对大吨位反力台座进行了设计;并根据缩尺比例,对杆件间的连接、杆端局部加强部位、加劲弦嵌固端以及铰支座进行设计计算,最终确定了特殊节点缩尺模型的结构构造。在此基础之上进行了模型静载试验,顺利加载至设计荷载的1.4倍,结构整体处于弹性阶段,试验结果验证了本试验设计安全可靠,可为后续类似多杆件节点的静力性能试验研究与设计提供参考。  相似文献   

10.
为优化公轨双层斜拉桥的构造设计,以东水门长江大桥为研究背景,取主桥跨中区域(约112m)建立有限元模型进行仿真模拟,该模型对桥梁各类构件的实际构造特征和截面尺寸进行了精细化模拟。基于数值模拟结果,分析了桥梁结构及局部构件的应力状态,并针对加劲肋、横梁对桥梁的变形控制和桥面应力的影响进行了参数化分析。结果表明:腹杆是上下层桥面惟一的传力构件,上下层桥面板的峰值应力主要出现在腹杆与弦杆节点处,建议考虑增大节点板厚度、转角采用圆曲线过渡或局部加固,以减小局部应力集中;加劲肋的间距变化对桥面应力及局部变形影响较大,间距宜控制在0.35~0.7m,否则将导致应力分布的改变及较大的局部凹陷;横梁的分布对桥梁变形控制及应力分布等至关重要,建议类似桥梁横梁间距控制在3m左右,在弦杆节点处设大横梁,节间设置小横梁。  相似文献   

11.
为降低带外伸跨的钢桁梁悬索桥主桁杆件疲劳应力幅,研究不同结构体系对主桁杆件疲劳应力幅的改善效果。从杆件疲劳应力幅和竖向刚度的角度给出最佳方案;并从线路坡度与曲率的角度,研究该方案对列车走行过程中线路的影响,进而确定方案的可行性。结果表明:去除桥塔处的刚性竖向支座,换成吊在主梁下弦节点的弹性吊索,能有效地降低桥塔位置处上弦杆和主梁梁端下弦杆的疲劳应力幅,且主梁的竖向刚度较理想,对列车走行线路影响很小。  相似文献   

12.
沪通长江大桥非通航桥采用112m简支钢桁梁结构,主桁弦杆与腹杆由箱形杆件和工形杆件组成,杆件数量较多,结构复杂。根据该桥钢桁梁杆件的结构特点和制造要求研制了合理的工艺装备,以提高产品质量和结构耐久性。使用标准化胎架进行杆件组装作业,利用无损吊装、翻身工装进行板件、板单元和杆件的组装、吊装及翻身作业;采用液压翻身工装进行箱形杆件的翻身作业;采用液压调整工装进行杆件的划线、加工调整作业,对倒棱设备和焊接设备进行升级改造,以适用于杆件制造。钢桁梁杆件制造工艺装备的应用,实现了杆件制造的工位化、工装化、专业化、标准化作业,有效提升了制造效率,降低了产品离散性,确保工程质量和结构耐久性。  相似文献   

13.
沪通长江大桥天生港专用航道桥为(140+336+140)m刚性梁柔性拱桥,主梁为带竖杆的华伦式桁架,横向采用三片主桁结构。钢桁梁弦杆为典型的箱形整体节点构造,接头较多,孔群空间关系复杂,为保证弦杆钻孔精度,腹板孔群制孔时,杆件组焊并修整合格后,首先将杆件吊至高精密的划线平台处进行整体划线,然后利用专用整体节点杆件双机联动立柱式数控钻床进行钻制。顶、底板及横梁接头孔群采用成熟的划线工艺和高精度样板钻制。斜向接头板组装时,首先采用斜向接头板先孔法,然后用高精度定位样板组装。实践表明,弦杆制孔精度控制技术及孔径偏差控制措施,有效地保证了弦杆的钻孔精度和孔群的相对位置关系。  相似文献   

14.
公安长江公铁两用特大桥非通航孔(6~10号墩)采用4×94.5m连续钢桁梁结构,连续钢桁梁采用双片主桁结构,主桁中心距14.0m、桁高13.0m、节间距13.5m,共28个节间,主桁弦杆采用焊接整体节点,上、下弦杆在节点外采用高强度螺栓拼接。通过对钢桁梁架设方法研究,并结合工程特点及现场情况,该桥非通航孔钢桁梁采用WD70型全回转架梁吊机散拼法安装,在10号墩后方(公安侧)设置架梁拼装支架,自10号墩向6号墩方向逐节间、逐孔架设钢桁梁。其中,9号至10号墩间钢桁梁采用膺架法拼装;8号至9号墩间钢桁梁采用半悬臂拼装架设法拼装;6~8号墩间钢桁梁采用全悬臂拼装法拼装。该桥钢桁梁于2015年9月1日完成,架设过程质量安全可控,架设后钢桁梁线形良好,满足设计要求。  相似文献   

15.
海珠大桥加固实施方案静力分析   总被引:2,自引:0,他引:2  
广州海珠大桥(钢桥)采用自锚式吊桥加固设计方案。静力分析表明,经过加固后,大桥中跨可减少原桥恒载下的弹性挠度,桁架式载显著;边跨桁架挠度减小,由背索的张力和部分节间施加预应力使下弦杆内力明显减小。实现体系转换后,大桥结构受力合理,满足设计要求。  相似文献   

16.
为满足现有交通量及荷载等级的要求,需对埃塞俄比亚奥莫河上的下承式简支钢桁架桥进行提载加固。大桥全长128m,共16个节间,节间长度为8m,主桁高9m,每个主桁由2个桁架片组成,主桁中心距为9.35m。分别对体外预应力法和增设斜拉索法2种加固方案进行计算分析。计算结果显示:2种加固方案均能满足提载要求。采用体外预应力法加固后,桥梁挠度和下弦杆拉应力有较大改善,且施工简单,成本较低;采用增设斜拉索法加固后,桥梁挠度值和应力值有较大改善,全桥承载力提高比例比体外预应力法高,但对承台、地基承载力和锚固端地质条件要求较高。综合比选,确定采用体外预应力法为现阶段加固方案,增设斜拉索法为远期加固方案。  相似文献   

17.
南大联络线野芷湖特大桥为南湖至大花岭联络线上一座特大桥,桥跨布置为40×32m简支梁+(28+56+28)m连续梁拱组合梁+45×32m简支梁,上跨野芷湖区及南环铁路。该桥在运营过程中,因人为弃土堆载,导致26号~31号桥墩横桥方向发生了水平位移。通过外观检查、无损检测、脉动试验和桩基钻芯取样等方式,采集数据,综合评估显示桥梁下部结构受损严重,需要维修加固。为能在短时间完成加固并恢复铁路营运,成功优化了施工组织,采用快速设置临时墩技术、顶升T梁(解除钢轨和轨枕间扣件)技术、在维持铁路临时运营状态下快速完成桩基础、墩身拆除和重建技术,以及由临时墩向新建门式墩进行二次体系转换等技术,顺利完成该桥维修加固。  相似文献   

18.
为给板桁组合结构节点板的设计提供参考,以沪通长江大桥为背景,针对板桁组合结构的传力特点,采用ANSYS建立节点区域梁段的板壳模型,计算轴力、弯矩单项荷载作用下节点板区域的应力分布特征和应力集中系数。分析弦杆腹板高度、腹杆翼缘宽度、弦杆与腹杆间圆弧半径、腹杆间圆弧半径4个参数对应力集中系数的影响,并拟合出应力集中系数的计算公式。结果表明:单项荷载作用下的应力最大值均出现在所加载的杆件与相邻杆件间的节点板圆弧过渡起始位置;不同杆件在轴力、弯矩作用下的节点板区域应力集中系数不同;下弦杆在轴力、弯矩作用下的节点板区域应力集中系数均较大;下弦杆在轴力作用下的节点板区域应力集中系数与现有公式计算值吻合较好,其他情况下节点板区域的应力集中系数均较现有公式计算值大,需引起重视。  相似文献   

19.
郑州市北三环路彩虹桥为(122+62+62+122)m简支曲弦下承式钢管混凝土桁梁桥,为改善其目前运营服务能力,提出6种加固改造方案,针对各加固方案进行仿真计算分析。计算结果表明:简支变连续体系改造使主桁端部出现应力集中现象,不适用于该桥改造;在改造横撑的基础上增设跨中吊杆是减小横梁跨中相对变形的有效途径;增设边纵梁和外吊杆可有效改善横梁悬臂端变形,提升悬臂段桥面承载力;增大腹杆截面可明显提高62m跨径桥梁的整体刚度和横梁局部刚度,有效降低腹杆的应力幅;加强纵向预应力可有效降低桥梁的下弦杆变形,但对横梁相对变形影响不大。综合运用横撑改造、增设跨中吊杆和外吊杆、增大腹杆面积、加强下弦杆纵向预应力等几种改造措施使桥面变形明显改善,62m跨径桥梁整体结构刚度得到有效提高,腹杆最大应力显著降低,上弦杆最大应力仍有足够的安全储备。  相似文献   

20.
黄冈公铁两用长江大桥主桥为(81+243+567+243+81)m五跨连续钢桁梁斜拉桥。该桥采用塔墩固结、塔梁分离的结构体系;采用双层钢桁梁结构,上层为双向4车道高速公路,桁宽27.5m,下层为双线铁路,桁宽16m;钢桁梁采用倒梯形斜主桁断面,桁高15.5m,节间长13.5m;主桁为N形桁架,主桁上、下弦杆均采用平行四边形截面,斜杆采用平行四边形截面或斜工字形截面;节点为焊接整体节点,节点位置的杆件均采用等强对拼连接,斜拉索通过内置式钢锚箱锚固在上弦节点内部;公路及铁路桥面系采用板桁结合的正交异性板整体桥面系;在上弦节点位置设置三角形桁架式横向联结系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号