首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正2019年7月15日,孟加拉帕德玛大桥主桥最后一根直径3m、长度近110m、重达500t的钢桩被插打至河床设计标高(见图1)。至此,主桥钢桩全部插打完成,大桥后续将进行承台、墩身及钢梁架设等相关工作。  相似文献   

2.
孟加拉帕德玛大桥主桥全长6.15km,水中墩设计采用Φ_外3.0m、壁厚60mm、长度为101.126~125.457m、倾斜度为1∶6的超长大直径倾斜钢管桩基础。对10根Φ1.5m的钢管桩进行试桩研究,对比试桩地勘、静载试验及PDA测试承载力结果,分析试桩桩端持力层位置、桩底和桩侧压浆效果。结果表明,桩端持力层位置不能位于软弱的黏土层内,或离软弱的黏土层较近;密实粉细砂地质条件下,界面压浆能够显著起到提高桩端承载力、减小桩基沉降的作用;在土层较为均匀的粉细砂地层中,采用超细水泥浆液、通过"帘幕注浆法"进行桩侧渗透压浆,能显著提高桩侧极限摩阻力。正式桩根据地勘结果和试验结果,采用调整桩底标高、增加桩长、增加中心直桩以及带桩侧压浆槽等形式。  相似文献   

3.
孟加拉帕德玛大桥主桥由41孔跨度为150 m钢桁梁组成,由于钢梁为全焊接结构,采用浮吊与桥面吊机配合整孔安装的施工方案,钢桁梁吊装上桥后不具备线形调整的条件.钢梁竖向线形误差要求控制在±20 mm以内,对比国内同类桥梁,线形控制要求高;且支座下摆允许偏离设计位置±10 mm,整孔钢桁梁纵向制造长度控制难度大,通过研究影响预拱度理论计算的因素,以及预拱度的设置方法,为工程的顺利实施提供理论依据.其成果对同类国际工程具有参考意义.  相似文献   

4.
正孟加拉当地时间2018年8月11日,帕德玛大桥最后一根钻孔桩混凝土浇筑完毕(见图1),至此帕德玛大桥397根钻孔桩混凝土灌注全部完成。帕德玛大桥全桥公、铁路引桥合计3 680.544m,总计397根钻孔桩。经过2年的施工,克服了在  相似文献   

5.
正2018年3月5日,随着7B钢桁梁P39号墩墩顶支座灌浆的完成,孟加拉帕德玛大桥首联钢梁架设完成关键施工节点。7B孔钢桁梁长150 m,宽12.4m,重达3200t。天一号3600t架梁船于2018年1月底开始架设,通过钢桁梁对接、线形调整、支座灌浆等工序,7B孔钢桁梁架设工作圆满完成(见图1),为后续钢梁架设工作积累了宝贵的经验,也拉开上部结构全面施工的序幕。  相似文献   

6.
正孟加拉时间2018年6月29日,随着7F跨钢桁梁P42号墩墩顶支座灌浆的完成,孟加拉帕德玛大桥首联钢梁架设任务圆满完成(见图1)。7F跨钢桁梁长150 m,宽12.4 m,重达3 200t。万吨级中心架梁起重船"天一号"成功将重达3 200t的第5跨钢梁架设到桥墩上,标志着由中国中铁大桥局承建的帕德玛大桥全桥首联钢梁架设完成,为主桥铁路、公路桥面板后续架设奠定了坚实基础。  相似文献   

7.
孟加拉帕德玛大桥主桥水中墩基础采用直径3m、倾斜度1∶6的大直径超长钢管桩。钢管桩在岸上分2段制造,利用水上定位平台+导向架,采用液压打桩锤插打;采用空气反循环法,利用斜孔钻机进行桩内取土。为充分发挥钢管桩桩端承载能力、增加钢管桩刚度,在桩端5m土塞与底部10m混凝土的交界面进行全断面压浆;桩底压浆结束后,采用振冲密实法,向桩内分层填充干净中粗砂至距桩顶15m处;桩内填砂顶面密实并整平后,安装钢筋笼,浇筑桩顶15m高混凝土。该桥采用这一系列技术,解决了大直径超长倾斜钢管桩的插打、孔底压浆、密实度达到95%的孔内填砂等施工难题。  相似文献   

8.
孟加拉帕德玛大桥主桥为41孔150m跨钢混结合连续梁桥,全桥共42个桥墩,其中40个水中墩均采用6根外径3m、壁厚60mm的钢桩基础,钢桩斜度1∶6,沿圆周均匀分布,最大桩长117.3m,重约510t。经方案比选,钢桩分为2节制造,采用可调浮式钢平台+多级导向架吊装插打。钢桩在岸上分2节制造完成后,采用两端封堵水中自浮式的存放和运输方法,利用拖轮将钢桩运至墩位。调整钢桩施工平台及导向架平面位置,利用浮吊及打桩锤将钢桩分节插打到位。为保证钢桩施工精度,在插打前设置了钢桩预偏量。建立定位平台和导向架整体有限元计算模型,计算结果显示:导向架、定位平台及钢桩的受力及变形均满足设计及规范要求。  相似文献   

9.
正2019年5月2日,孟加拉帕德玛大桥主桥公路桥面板开始连续架设(见图1)。公路桥面板预制分为南、北岸2个场地,在南岸预制第5~7联公路桥面板,在北岸预制第1~4联公路桥面板,预制桥面板总数量为2 917块。根据施工计划,公路桥面板从南岸开始架设,预计2020年8月架设完成。  相似文献   

10.
孟加拉帕德玛大桥水中墩基础为大直径(ф3m)闭口复合截面斜钢管桩,所处地层为密实粉细砂。为了恢复钢管桩取土过程中,对土体的扰动导致的应力释放,以及减少桥梁在运营阶段产生的沉降值,采用界面压浆法对土塞和桩端土体进行全断面充分预压。结果表明:密实粉细砂地质条件下,较少的压浆量即能形成高的压浆压力,从而在界面位置对土塞形成充分预压;界面压浆能够显著起到提高桩端承载力、减小桩基沉降的效果;界面压浆法可以实现水泥浆在界面位置的全断面填充和预压,是一种稳固可靠的压浆方法,操作简单且易于控制。  相似文献   

11.
沈涛 《世界桥梁》2020,(3):22-26
孟加拉帕德玛大桥水中40个主墩采用直径3.0m钢管桩基础,其中11个主墩共计77根钢管桩在桩身周围均布了10道压浆槽,对每道压浆槽进行桩侧压浆,以提高钢管桩承载力。桩侧压浆水泥浆采用超细水泥配置而成,以适应密实超粉细砂地质条件。先将10道压浆槽内泥砂清除至设计标高;再布置2条线路对2道压浆槽进行同步换浆和桩侧压浆,压浆速度控制在10L/min以内,压浆压力按1,2,3MPa分级设置。压浆量达到设计压浆量或压力达到3 MPa且无法继续注浆时,继续注浆10min或保压10min,即完成该压浆槽桩侧压浆,按轮次连续完成其它压浆槽桩侧压浆。荷载试桩和工艺试桩结果表明,通过实施桩侧渗透压浆技术,可提高钢管桩与土体之间的摩阻力约58.2%,有效提高了钢管桩承载力。  相似文献   

12.
孟加拉帕德玛大桥主桥共41孔,每孔跨度150m,全长6 150m。该桥业主提供的控制网坐标系统采用UTM投影,且桥位区远离中央子午线,投影变形巨大,导致控制网无法满足大桥施工要求。为了消除投影变形,对该桥坐标系统变形原因进行了详细的理论分析及实地验证,针对存在的坐标系统问题提出解决方案:以高斯投影为基础,选取桥位区平均经度90°10′为中央子午线,选择平均施工高程面37m为投影高程面,建立的桥梁施工独立测量坐标系统,很好地消除了控制网坐标系统的变形,满足帕德玛大桥施工精度要求,保证了大桥顺利施工。  相似文献   

13.
耿树成 《世界桥梁》2021,49(3):21-27
孟加拉帕德玛大桥主桥为7联41孔跨度150 m的钢-混结合连续梁桥,铁路桥面为钢纵梁与预制混凝土桥面板组合体系,预制桥面板安装在纵梁顶面.由于铁路桥面纵梁及预制桥面板数量多,且受施工环境制约,从主要机械设备、架设工效、优缺点、施工难易程度、经济性等方面,对3种架设方案进行比选,最终采用165 t浮吊架设铁路桥面纵梁和预...  相似文献   

14.
孟加拉帕德玛大桥为公铁两用全焊接整体节点钢桁梁桥,桥跨布置共分7联:6×(6×150m)+1×(5×150m)。上层公路桥面采用混凝土板块预制结构,现场整体浇筑;下层铁路桥面为横、纵梁板梁结构,横梁与钢桁梁下弦整体节点全熔透对接焊接,采用整跨一体运架方案施工。150m跨3D拼装与焊接施工场地选择在桥址陆地,杆件运输至拼装场后,首先在胎架上进行弦杆与节点的组拼与焊接(二拼),之后进行桁片的组拼与焊接(桁拼),桁片拼装结束后,在150m跨整孔大节段立体拼装前,采用起重设备完成由平位到立位的转换,最后完成150m跨3D拼装与焊接(立拼)。该拼装技术首次应用于此类大型全焊接钢桁梁桥,实践证明,该施工技术可行。  相似文献   

15.
《桥梁建设》2021,51(5)
孟加拉帕德玛大桥为双层桥面,下层为单线铁路,上层为双向4车道公路,主桥上部结构为6×(6×150) m+1×(5×150) m钢-混组合梁。钢主梁为全焊钢桁结构,在工厂整孔制造,纵、横移至码头,利用"天一号"运架一体船吊运至待架孔位,并利用吊架辅助架设,减少了现场焊接接头数量,确保了钢桁梁安装质量,降低了施工风险。公路桥面为预制预应力混凝土桥面板,在岸上横向整幅、纵向分块匹配预制,桥上利用架板机逐块吊装、胶拼,预应力束张拉后与钢桁梁结合,降低了桥面板预应力损失,确保了钢-混凝土结合质量。铁路桥面为铁路纵梁与预制混凝土桥面板组合结构,铁路纵梁及混凝土桥面板在岸上分别制造,每节间的4根铁路纵梁在车间组拼成整体,平板驳上与相应桥面板临时组拼成整体,进行运输、吊装,施工速度快。  相似文献   

16.
广州新光大桥钢板桩围堰设计   总被引:1,自引:0,他引:1  
广州新光大桥主墩位于珠江主航道中,承台施工受珠江潮水影响,施工难度大、工期紧.采取不进行混凝土封底的钢板桩围堰设计施工,速度快、质量优、节约成本.  相似文献   

17.
赫宏伟 《中外公路》2019,39(1):121-125
银西铁路黄河机场特大桥位于黄河之上,基础采用水中围堰施工方法。桥梁基础地基土多为粉土、粉砂和细砂土,地基土如果受较大压力差时,易造成地基产生流砂和管涌破坏,为了防止该种破坏现象,围堰封底采用水下混凝土封底。文中以13~#主墩围堰封底混凝土设计及施工为例,利用Midas软件对封底混凝土进行了应力模拟分析,并进行了混凝土扩展度试验。模拟及试验结果表明:封底混凝土最大拉应力为1.23MPa,小于混凝土允许抗拉强度1.57MPa;每1m3混凝土掺入8.8kg絮凝剂,其扩展度为540mm,掺入该掺量絮凝剂时,混凝土强度及扩张度满足规范及设计要求。  相似文献   

18.
正2018年8月21日,赤壁长江公路大桥3号、4号桥塔墩承台首层混凝土浇筑完成(见图1),为后续施工创造了积极条件。全桥路线总长11.2km,为双向6车道一级公路,其中长江大桥全长3 350m。3号桥塔墩承台长64m、宽30.4m、高5.5m;4号桥塔墩承台长69.2m、宽34.6m、高5.5m。桥塔墩承台均采用2次浇  相似文献   

19.
东沙大桥全长1 838.8 mm,其中主桥为41.6 m+78.4 m+270 m+78.4 m+41.6 m斜拉桥,主桥梁宽为27.5 m。主墩承台为六边形圆倒角整体式承台,几何尺寸为45.369 m×20.1 m×4.5 m,顶面标高为+4.0 m。结合工程实际,介绍主墩承台钢板桩围堰法施工工艺,有关经验可供相关专业人员参考。  相似文献   

20.
深水基坑是现代跨河、湖、海大型桥梁施工常见的基础形式,钢板桩围堰作为深基坑施工中常见的施工工艺,其设计计算验证是确保安全的必要程序.文中依托规划312国道上无锡市经一路延伸段工程望虞河大桥主墩基础,对钢板桩围堰进行了设计计算.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号