共查询到20条相似文献,搜索用时 15 毫秒
1.
为综合解决钢桥面体系中正交异性钢桥面结构疲劳开裂和沥青混凝土铺装层易损两种病害问题,本文提出了新型正交异性钢板—超高韧性混凝土(STC)组合桥面结构,基于广东省肇庆市马房大桥,开展了新型正交异性钢板—STC组合桥面结构足尺模型试验。试验结果表明,STC具有良好的抗拉性能,其最大拉应变达到955με而未出现开裂,因而能够适应马房大桥上的受力状态。2011年,新型正交异性钢板—STC组合桥面结构成功应用于马房大桥第11跨,各道施工工序均方便可行,且现浇的STC层经高温蒸汽养护后,未出现任何收缩裂缝。同时,实桥检测表明,增设STC层后,桥面系的局部刚度显著提高,车载引起桥面系构件中的局部应力降低了80%—92%,将有助于提高桥面系的抗疲劳寿命。 相似文献
2.
钢桥面铺装是钢桥面受力体系的重要组成部分,其铺装性能的要求程度远高于混凝土桥面铺装和普通路面铺装,需要满足钢桥面使用性能的诸多特殊要求。钢桥面铺装体系的选择受地域气候、交通情况、施工条件等多种因素的影响,需要经过综合考虑进行比选,钢桥面铺装的选型属于钢桥设计的重要环节。对钢桥面铺装的多种材料及特性进行介绍,对天津地区钢桥面铺装的设计条件、选型原则进行分析,并给予设计建议,可供类似工程参考。 相似文献
3.
聂建明 《国防交通工程与技术》2023,(2):18-22+27
采用H型钢-超高韧性混凝土(STC)板的组合结构形式可有效改善传统正交异性钢桥面-超高韧性混凝土组合桥面结构中存在的结构疲劳开裂问题。为了研究不同结构参数对H型钢-STC组合桥面结构开裂性能的影响规律,基于ABAQUS以及扩展有限元方法(XFEM)建立了考虑裂纹扩展的组合梁有限元模型,对不同桥面板厚度、配筋率条件下开裂性能以及延性的变化规律开展了有限元模拟研究。研究结果表明,与采用普通混凝土(C50)相比,不同混凝土板厚度条件下,采用STC对开裂强度与延性的提升效果最大分别为175.0%与446.3%,而不同配筋率条件下的提升效果最大可达205.1%与1 330.3%。为H型钢-STC组合桥面结构在实际桥梁工程中的应用提供相应的技术支撑与建议。 相似文献
4.
以开口加劲肋正交异性钢桥面铺装体系作为研究对象,建立了包括桥面板和铺装的整体三维有限元分析模型,研究了荷载作用下铺装层的力学特性.分析表明,横向拉应力是开口加劲肋正交异性钢桥面铺装设计的一个重要控制指标;开口加劲肋正交异性钢桥面铺装层间剪应力较大,在铺装结构设计时应注意选择具有较强抗剪强度的粘结材料;开口加劲肋正交异性钢桥面铺装对车辆荷载的应力应变响应具有很强的局部效应. 相似文献
5.
《山东交通学院学报》2016,(2):32-37
采用有限元方法建立一座正交异性钢桥面连续梁桥的全桥空间有限元模型;在桥面施加不利车辆荷载,分析桥面板厚度和U型加劲肋厚度等因素对桥面铺装层应力的影响。分析结果表明:横向最大拉应力对铺装层受拉开裂起控制作用;随着桥面板厚度和U肋厚度的增加,桥面铺装层所受的横向最大拉应力有所减小;顶板厚度从12 mm增加至20 mm,铺装层横向最大拉应力从0.62 MPa减小至0.52 MPa,降低16%;U肋厚度从6 mm增加至12 mm,铺装层横向最大拉应力从0.63 MPa减小至0.51 MPa,降低19%。顶板厚度变化和U肋厚度变化与铺装层受力变化均为非线性关系。 相似文献
6.
为进一步分析钢桥面铺装的真实受力特性,对轮胎与钢桥面铺装的接触力学行为进行了研究.通过建立轮胎模型,对轮胎接地压力进行计算,并与实测数据对比验证了轮胎接触模型的准确性;通过建立轮胎与桥面接触模型,对不利荷载位置时桥面铺装的力学响应计算与分析,得出铺装层竖向位移、铺装层顶弯拉应力、粘结层剪切应力的分布特性,指出桥面铺装典型病害产生的力学机理;通过对设定的一组铺装层计算模量对应的铺装层力学响应极值进行计算,得出铺装层弯拉劲度模量变化对铺装层力学响应的影响规律,并对比分析了轮胎荷载与均布荷载对结算结果的影响作用.结果表明:在等量荷载条件下,采用轮胎与桥面接触模型计算出的铺装层最大层顶反弯应力、粘结层最大剪切应力均明显大于采用均布荷载的计算结果,其中:铺装层层顶反弯应力增幅约为5%,粘结层剪切应力增幅约为9%.采用轮胎与桥面接触模型进行钢桥面铺装设计会更为安全. 相似文献
7.
8.
9.
在具体的桥梁工程施工过程中要提高对桥面系和附属工程施工技术和细节的重视,要发挥技术对施工内在的指导和控制作用,以有效的技术措施确保桥面系和附属工程的施工质量,进而发挥出设计和规划的功能。以桥面排水设施、防水设施、桥面铺装层、伸缩装置、防护设施、人行道施工作为主要环节,进行了桥面系和附属工程施工的技术探讨,希望以技术的手段提升桥面系和附属工程施工的质量,更好地完成桥梁工程施工的总任务。 相似文献
10.
钢-UHPC组合桥面板性能分析及应用 总被引:1,自引:0,他引:1
超高性能混凝土(UHPC)是一种高性能混凝土材料,在大跨结构中有着比一般混凝土更加宽广的前景。针对传统正交异性钢桥面板普遍存在的桥面板疲劳与桥面铺装易损坏等问题,提出钢-UHPC组合桥面板结构由薄UHPC桥面板以及钢梁组成,有着耐久性强、徐变收缩小、不易开裂、比强度大等优势,在大跨结构应用时,可以解决传统的钢桥面板铺装易损和桥面疲劳开裂等问题。 相似文献
11.
12.
新型厚边U肋正交异性钢桥面的应用有望提高顶板与U肋连接焊缝的抗疲劳寿命. 为研究其实际疲劳性能和具体提升机理,对该类钢桥面中顶板与U肋连接焊缝开展了疲劳试验和数值分析. 通过足尺模型疲劳试验,采用名义应力法和热点应力法对常规等厚U肋钢桥面和新型厚边U肋钢桥面进行了对比;在疲劳试验的基础上,建立了精细化有限元模型并通过试验数据验证了其有效性;通过该模型对厚边U肋钢桥面顶板与U肋焊缝的疲劳性能提升机理进行了分析. 结果表明:厚边U肋的使用有效地提高了顶板与U肋连接焊缝的疲劳强度;在焊接负公差存在的情况下,厚边U肋试件对未熔透厚度的变化相对不敏感,从而保障了顶板与U肋连接焊缝疲劳性能的稳定性. 厚边U肋正交异性钢桥面在北京三元桥新桥和成都凤凰山高架桥等工程项目中的应用验证了其抗疲劳的有效性. 相似文献
13.
钢桥面铺装的拉应力分析 总被引:7,自引:0,他引:7
针对典型的钢桥桥面铺装体系,采用SAP有限元软件,分析了铺装层内的拉应力的变化规律。分析表明,铺装层的最大横向拉应力远远大于最大纵向拉应力,最大横向拉应力通常出现在梯形加颈肋肋顶的铺装层表面,铺装层的模量也对拉应力影响很大。 相似文献
14.
不同钢桥面铺装体系具有迥异的施工要求和特点,这种施工特点主要与其所采用的铺装材料息息相关。因此,要了解不同钢桥面铺装方案的施工特点,就必须了解其所采用的材料的特点。 相似文献
15.
结合三明市东新五路大桥主桥高桩承台钢吊箱的施工实例,介绍单壁钢吊箱的设计要点、结构组成及施工方法,总结深水高桩承台钢吊箱施工的成功经验,为同类工程施工提供参考。 相似文献
16.
车辆荷载作用下正交异性钢桥面板疲劳受力特性分析 总被引:1,自引:0,他引:1
以南京长江三桥为工程背景,建立了正交异性钢桥面板的混合单位模型和简化计算模型,采用两种模型对车辆荷载作用下钢桥面板的受力特性进行了分析。结果表明:正交异性钢桥面板第一受力体系对顶板横向受力、横隔板受力影响不显著。两种模型计算得到的顶板细节、横隔板细节应力幅偏差均小于5.0%,采用简化计算模型进行钢桥面板疲劳应力幅分析合理有效。顶板细节的应力影响范围约1 m,每次车轮荷载作用引起一次应力循环。横隔板细节的应力影响范围约4 m,轴距小于4 m的车辆产生的应力将出现叠加效应。 相似文献
17.
为解决采用传统悬臂施工对跨径较大桥梁造成变形较大、施工进度较慢、难以保证施工安全的问题,结合波形钢腹板预应力混凝土(prestressed concrete, PC)组合梁自身特点,以某特大桥梁为工程背景,应采用异步浇筑快速施工方法,采用有限元分析软件MIDAS Civil建立全桥有限元模型,将全桥划分为75个施工阶段进行施工全过程模拟,对比分析异步施工法和传统悬臂施工法在各施工阶段的应力和变形。分析结果表明:采用异步施工成桥后,模型中跨根部截面混凝土应力分布较普通悬臂施工均匀,成桥状态较合理,结构整体性能较好;采用异步施工法的桥梁变形小于传统悬臂施工法,施工荷载分布更有利于控制桥梁线形。 相似文献
18.
19.
借助有限元分析和随机车流下构造细节应力现场监测数据获取了某正交异性钢桥面板横隔板弧形切口疲劳细节一定宽度范围内的应力时程, 分析了应力峰值分布; 基于国际焊接学会和挪威船级社推荐的热点应力外插公式评价了横隔板弧形切口疲劳寿命, 研究了适用于横隔板弧形切口热点应力的外插公式。研究结果表明: 在桥面车辆通行下, 横隔板弧形切口响应为压应力, 且应力峰值大; 横隔板弧形切口不仅产生了显著的应力集中, 且应力沿构造细节最小净截面一定范围呈显著的非线性分布; 因应力插值点位于横隔板弧形切口应力分布的非线性区, 采用国际焊接学会和挪威船级社提出的热点应力插值公式得到的热点应力偏大, 评价的疲劳寿命均偏保守; 提出的两点线性外插公式和三点二次外插公式的应力插值点均位于构造细节应力的线性分布区, 且第1个插值点均距横隔板弧形切口自由边1倍横隔板厚度, 依此方法评价的横隔板弧形切口疲劳寿命与实桥该构造细节的开裂寿命较为一致。正交异性钢桥面板横隔板弧形切口的疲劳性能评价若基于热点应力法开展, 可采用疲劳等级FAT90和建议的三点二次外插公式。 相似文献
20.
钢-混凝土组合梁桥预制桥道板与桥面铺装现浇层存在龄期差异,针对这种差异引起的收缩徐变的不同,用错位法对现浇层的应力状态及层间剪力进行了分析,得出了桥面铺装现浇层应力及其层间剪力的计算公式。最后通过实例计算,得到了铜-混凝土组合梁桥面铺装现浇层收缩徐变所产生的应力。计算结果表明,随着现浇铺装层龄期的增加,铺装层的拉应力逐渐增大,可致混凝土开裂,因此应采取适当的防裂措施。 相似文献