首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以某公路桥梁为工程背景,以其有限元模型为基准模型,对横向陡坡地形下和常规地形下双柱墩梁桥的地震反应进行对比分析。结果表明:横向桥墩刚度差异会放大桥梁的最大加速度,对桥墩的抗震不利;基准模型的高墩的最大位移大于低墩,高低墩纵向位移不一致导致盖梁的扭转,对盖梁受力不利;横向桥墩刚度差异将导致主梁内力增大和矮墩的剪力大于高墩等不利影响。  相似文献   

2.
对比分析某山区双柱墩梁桥在横向陡坡地形和常规地形下的地震反应及不同矮、高墩刚度比情况下的地震响应,结果表明:桥墩横向刚度差异对墩顶位移、桥墩剪力、墩底最大弯矩的影响较大。高墩位移随矮、高墩刚度比的增大逐渐增大,剪力和弯矩逐渐减小;矮墩位移随矮、高墩刚度比的增大逐渐减小,剪力和弯矩逐渐增大;矮、高墩在纵向的位移差随二者刚度比的增大而增大,即矮、高墩的纵向位移趋于不同步,盖梁出现扭转。  相似文献   

3.
双柱式框架墩的柱间系梁除了可以增加桥墩稳定性,同时对结构抗震性能也有很大影响,但目前研究不足,现阶段规范规定也并不明确,04版混凝土和预应力混凝土桥规中仅对系梁的尺寸进行限制:宽0.8~1.0倍墩径,高1.0~1.2倍墩径,配筋按照构造布置;08版抗震细则中对系梁位置进行规定,7 m一道。这些比较宽泛的规定导致现阶段多数设计中对系梁位置、截面尺寸和配筋一般按照经验进行设计。以一座3×20 m预应力混凝土装配式箱梁桥作为研究对象,研究柱间系梁设置个数、位置等对双柱式桥墩地震响应及抗震性能的影响,以期为同类桥梁抗震设计提供借鉴和参考。  相似文献   

4.
通过对内昆线花土坡特大桥空心高墩进行地震反应分析,研究了墩顶约束作用、墩底弹簧约束、P-Δ效应对地震反应的影响,得出了一些关于铁路空心高墩地震反应方面的有意义的结论.  相似文献   

5.
基于Pushover分析方法与滞回分析,探索柔性横系梁对钢管混凝土双柱式桥墩抗震性能的影响,采用非线性纤维梁柱单元,建立单柱墩、柔性横系梁双柱墩和刚性横系梁双柱墩模型,并进行计算对比分析,研究横系梁刚度的变化对墩顶位移能力、位移延性系数及滞回性能的影响。结果显示,随横系梁刚度增大,墩顶的位移延性能力减小,位移延性系数增大,桥墩水平承载能力提高,同时滞回耗能性能提高。  相似文献   

6.
为了分析地震动的行波效应对山区大跨连续刚构桥易损性的影响,以西南地区某高墩大跨连续刚构桥为研究对象,采用谱兼容的方法选取了20条地震记录对桥梁结构进行了一致激励和多点激励下的增量动力分析,并得到其易损性曲线.研究结果表明:墩高越高,桥墩相对位移越大,最高墩的相对位移为矮墩的1.03~2.81倍,但矮墩发生损伤的概率要大于高墩,在抗震设计中应得到重视;与一致激励相比较,考虑行波效应时,矮墩发生轻微损伤和中等损伤的概率降低,高墩发生轻微损伤和中等损伤的概率增大,但行波效应会同时增加矮墩和高墩发生严重损伤的概率,因此在高墩桥的抗震设计中,特别是在高烈度地区,应考虑行波效应对桥梁结构的影响.  相似文献   

7.
我国已建设大量的大跨PC (prestressed concrete)连续刚构桥,其墩高可达百米及以上,存在遭受强震的可能,尤其是在西部高地震风险区,连续刚构桥主墩与主梁是刚性连接,主梁与桥墩共同承担地震力.为促进刚构桥的抗震研究,首先,梳理了国内外近期经受地震考验的几座刚构桥的震害表现;然后,从抗震理论及模型试验、减隔震(耗能)设计和震后修复等方面,对连续刚构桥桥墩、上部结构、基础等主要构件以及全桥整体抗震性能等热点问题进行了评述,刚构桥具有良好的抗震性能,高阶效应及墩梁固结处纵桥向弯矩对桥墩地震反映影响较大,模型试验及理论分析中主梁开裂及损伤问题易被忽视,低墩或双柱墩刚构桥已展开墩底及基础隔震研究;最后,对未来可开展研究方向进行了探讨,强震下箱梁的开裂机理及损伤控制,基于新型材料及耗能构件组成的高墩,基础隔震及高墩底部隔震的实用技术,箱梁及空心墩的地震损伤识别及震后修复,(近)跨断层地震作用下刚构桥的渐进倒塌机理与防止.  相似文献   

8.
采用ETABS建立有限元模型,对铜鼓高速上的石坪高架二桥进行抗震设计,石坪高架二桥是一座跨径为40 m双柱式高墩连续梁桥,分别研究了横系梁的数量、不同位置和不同刚度,对桥墩在地震荷载作用下各个主要截面处内力以及位移的影响。计算结果表明:地震作用下的双柱式高墩桥梁下部结构的内力分配与横系梁的道数有着非常紧密的关系,并且可以通过合理的设计横系梁来增加桥梁的横向刚度,进而使得下部结构内力得到合理的分配,提高桥梁的抗震性能。在墩身的0.4,0.5,0.7倍高度处各布置一道与墩身刚度比为0.5~0.75之间的横系梁,可以减小地震对高墩桥梁的破坏。  相似文献   

9.
从高墩桥梁的抗震难点出发,研究支座设置位置对其减震性能的影响。提出将传统的桥梁支座由墩顶转向墩的中部,墩顶与梁体固结,变高墩为低墩结构设计方案,使得高墩桥梁的抗震设计由延性设计转向减隔震设计。以某城市高架桥为研究对象,分别对刚构设计、墩顶减隔震设计、墩中减隔震设计以及墩底减隔震设计的抗震性能进行研究与评估。研究表明,中层减隔震体系桥梁可以改善并优化高烈度区高墩桥梁的地震响应。  相似文献   

10.
在强地震作用下高桥墩桥梁的反应与低桥墩桥梁相比具有明显的非线性行为。对高墩桥梁进行高墩桥梁抗震性能分析,研究高墩动力特性和地震响应特点,以及高桥墩在地震作用下非线性行为的作用原理,为高墩桥梁的地震反应分析提供可以借鉴的方法。  相似文献   

11.
针对目前城市桥梁通常采用的独柱墩连续梁桥的受力和结构设计存在的问题和缺陷,提出了2跨T形刚构桥梁结构形式,并对2种桥梁结构形式在构造和抗震性能方面的特点进行了对比.在构造方面,与连续粱桥相比,独柱墩T形刚构桥通过墩梁固结节省了支座,简化了伸缩缝的构造,增加了桥梁的横向稳定性,减小了横梁的受力.利用反应谱方法,推导了墩底固结等截面情况下T形刚构和连续粱桥简化模型的地震力和桥墩弯矩的解析表达式,并给出了不同周期范围内的2种体系地震反应的比较结果.采用桥梁的整体有限元模型,考虑桩土相互作用,对实桥进行了地震反应分析.研究结果表明,T形刚构采用墩梁固结能够显著降低地震力作用下桥墩和桩基的弯矩,提高了桥粱的抗震能力,简化了抗震构造.  相似文献   

12.
采用附加质量的形式考虑动水压力对桥墩的影响,以ANSYS有限元软件为计算平台,建立单墩模型并进行深水桥墩地震响应分析。得出动水压力改变桥墩的地震反应特性,增大了桥墩墩顶位移和墩底内力,并且动水压力作用还与结构本身质量和周期有关等结论。通过对连续梁桥和连续刚构桥的分析,验证了动水压力作用与结构固有周期有关,随着固有周期的增大,动水压力对结构的影响越小。  相似文献   

13.
针对桥墩温度梯度引起的桥上CRTSⅡ型板式无砟轨道纵向附加力与变形, 以梁-板-轨相互作用原理和有限元法为基础, 建立了多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型, 详细考虑了钢轨、轨道板、CA砂浆、底座板及桥梁等主要结构和细部结构的空间尺寸与力学属性; 采用单位荷载法计算了桥墩纵向温差作用引起的墩顶纵向位移, 分析了墩顶位移影响下桥上无砟轨道无缝线路纵向力与位移的分布规律。分析结果表明: 当各墩顶发生均匀位移时, 多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路纵向力分布规律及其最大值一致, 且随着墩顶均匀位移的增加而线性增大, 轨板相对位移峰值均出现在两侧桥台、台后锚固结构末端以及第2跨和最后一跨固定支座墩顶处; 当墩顶均匀位移为5 mm时, 多跨简支梁桥和大跨连续梁桥上钢轨最大纵向力分别为79.62和79.54 kN, 最大纵向位移分别为4.94和4.91 mm, 轨板最大相对位移均为0.23 mm; 当各墩顶发生不均匀位移时, 钢轨纵向力及轨板相对位移均在邻墩位移存在差异处发生突变, 多跨简支梁桥上固结机构纵向受力大于大跨连续梁桥; 对于高墩桥梁, 需重点关注相邻墩身高差最大处的轨板相对位移、底座板与桥梁相对位移及固结机构的纵向受力。   相似文献   

14.
采用SAP2000软件建立了某整体式斜交连续梁桥的三维有限元模型,通过非线性时程分析,研究了整体式斜交连续梁桥在地震作用下的受力特性及抗震性能,并探究了跨数、斜交角、台后土密实度和墩高等主要结构及基础参数对该类桥梁地震响应的影响。研究结果表明:整体式斜交连续梁桥中震害变形主要集中于桥台桩,桩顶截面在峰值加速度为0.4g的地震作用下形成塑性铰时,墩顶支座无破坏,且桥墩几乎无损伤;桥台桩位移及纵桥向弯矩的最大值均位于桩顶,而横桥向弯矩最大值可能位于桩顶或桩身反向弯矩峰值处;随着跨数的增加,整体式斜交连续梁桥的地震响应尤其是墩顶支座剪切应变及桥面转角明显增大,当跨数由单跨增加到4跨时,地震响应均增加了1倍以上,墩顶支座剪切应变甚至增加近2倍;随着斜交角的增加,桩顶纵桥向位移、桩顶截面屈服面函数值及中跨转角明显增大,斜交角为60°时,桩顶纵桥向位移增加了3倍以上,斜交角为45°时,墩顶支座剪切应变最大;随着台后土密实度的增加,各构件纵桥向位移响应与墩顶支座的纵向剪切变形降低,桥台桩、桥墩纵桥向位移及墩顶支座纵向剪切变形分别减小了12.9%、9.3%和9.5%;随着墩高的增加,墩顶位移明显增加,而支座剪切应变明显降低,但桩顶位移及桩顶截面屈服面函数值几乎不变;当墩高从4 m增大到9 m时,墩顶漂移率增大了42.1%,墩顶支座剪切应变减小了57.5%。   相似文献   

15.
以某特大桥中的一联三跨为依托,采用纤维单元建立钢管混凝土桥墩的桥梁有限元模型,输入M AXICO地震波,采用非线性时程分析法,计算钢管混凝土桥墩顺桥向地震响应,根据响应结果对钢管混凝土桥墩的安全性进行判断。结果表明:在地震作用下,钢管混凝土桥墩的内力、位移和变形均符合安全要求。  相似文献   

16.
采用ANSYS有限元分析程序,对某连续刚构桥进行了不同桥墩长细比情况下地震反应谱响应分析。由于改变长细比的方法不同,模型分为2组,第1组中改变桥墩沿纵桥向长度,第2组中改变桥墩高度,地震反应谱采用《公路桥梁抗震设计细则》(JTG/TB02—01—2008)中规定的设计加速度反应谱。研究结果表明:桥墩的长细比对连续刚构桥梁地震反应影响显著;随桥墩长细比增大,地震作用时,墩顶和墩底的受力将减小,但当桥墩长细比达到某一数值时,再增大长细比,桥墩受力变化将不再显著。  相似文献   

17.
为了研究复杂地形对桥上CRTS Ⅱ型轨道系统地震响应的影响, 以沪昆高速铁路线16~32 m简支梁桥为例, 考虑钢轨、扣件、轨道板、砂浆层、底座板、滑动层、桥梁、固结机构、端刺与挡块等部件, 建立了多跨简支梁桥-双线CRTS Ⅱ型轨道系统非线性动力学仿真模型, 研究了桥上CRTS Ⅱ型轨道系统纵向力分布特征; 设置了4种典型地形工况, 分析了不同墩高条件下桥上CRTS Ⅱ型轨道系统地震响应规律。分析结果表明: 与非纵连轨道结构相比, 桥上CRTS Ⅱ型轨道结构最大钢轨应力相对较小, 约为138.8 MPa, 应力包络曲线呈反对称, 线形平滑; 轨道板和底座板共同承受纵向力, 其最大值均出现在桥台附近, 最大拉应力分别达到25.2、27.1 MPa, 将在地震中发生开裂; 在地震中, 端刺承受着巨大的纵向力, 可达14~20 MN; 底座板与桥面之间相对位移超过24 mm, 对系统有隔震耗能作用; 地形对钢轨、轨道板和底座板纵向力的影响约为30%左右, 对墩底剪力影响较大, 在地形发生突变处, 墩底剪力增幅达4倍; 靠近桥台处的滑动层横向变形较大, 可达2.7 mm, 随着墩高增大, 扣件与滑动层纵横竖变形增大; 在地震作用下, 滑动层普遍存在着较大的竖向变形, 桥台附近滑动层竖向变形可达43.5 mm; 在地震中, 挡块与底座板之间存在着频繁的碰撞现象, 桥台附近挡块碰撞力可达38 MPa, 挡块将发生损坏。   相似文献   

18.
以某山区水库高速公路建设项目为工程背景,针对其高墩、深水桩基的显著特点,应用有限元分析软件建立了考虑不同墩高和桩长参数的实体板式、空心薄壁和格构式高墩连续T梁全桥计算模型;分别从上部结构受力性能、墩身内力、墩顶水平位移和抗震设计等方面对三种墩型进行了详细的对比分析,并对高墩设计选型中的一些关键问题进行了讨论,可为类似山区水库高墩桥梁的合理选型提供参考。  相似文献   

19.
为研究横向和竖向温度梯度对桥上CRTSⅡ型板式无砟轨道纵向力学特性的影响,以梁-板-轨相互作用原理为基础,建立大跨度连续梁桥上 CRTSⅡ型板式无砟轨道无缝线路空间精细化有限元模型,计算了轨道板竖向温度梯度和阴阳面横向温度梯度荷载作用下各轨道和桥梁结构的纵向力和位移. 结果表明:在其他温度荷载相同的情况下,轨道板竖向温度梯度对钢轨的纵向力和位移影响不大;当阴阳面横向温度差为10 ℃时,连续梁上背阴侧钢轨最大的纵向力是向阳侧的1.4倍,背阴侧桥墩最大的纵向力是向阳侧的3.5倍;在横向温度梯度作用下,钢轨纵向附加力由梁体伸缩和扭曲变形共同作用产生,横向温度梯度越大,背阴侧钢轨纵向力、位移最大值越大,向阳侧钢轨纵向力、位移最大值越小;横向和竖向温度梯度的存在不利于轨道和桥梁结构安全使用,因此,在高温差地区设计东西走向的大跨度桥上无缝线路需重点关注钢轨、轨道板和桥梁墩顶受力,并且对无缝线路的横向稳定性进行验算.   相似文献   

20.
大跨度预应力混凝土连续刚构桥动力特性及P-Δ效应分析   总被引:1,自引:0,他引:1  
以某已建成的连续刚构桥为研究对象,采用Midas/civil 2010有限元程序,建立连续刚构桥有限元模型,分析了连续刚构桥采用钢筋混凝土双薄壁实心墩、双薄壁空心墩和单柱式空心墩三种截面形式的动力特性和分别在纵向地震和横桥向地震作用下结构的P Δ效应。研究结果表明:三种不同截面类型的桥梁自振频率依次增大,不同的桥墩截面形式使桥梁结构的振型序列发生变化;在三种桥墩截面形式下,考虑P-Δ效应后,对纵向地震响应的影响显著而对横向地震响应的影响较小,但P-Δ效应并不影响桥梁结构的时程曲线趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号