首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
主路优先无信号交叉口次要道路通行能力分析   总被引:1,自引:0,他引:1  
基于可插间隙理论和概率论方法,推导出理想条件下只有2股车流情况下无信号交叉口次要道路的通行能力计算模型,然后对理想模型的不足进行分析,并运用随机过程的马尔可夫理论对无信号交叉口主要道路为双向4车道,次要道路为直行车、左转车、右转车混合交通流,同时考虑不同车型,建立次要道路通行能力的修正模型.  相似文献   

2.
为了均衡同一进口内直行和左转车流的饱和度,使单进口放行方式的通行效率和时空资源利用效率更高,阐述了基于效用理论与车流临界模型的直左合用车道的设计方法,根据对山东济南无影山中路-黄岗路交叉口的实地调查,运用Webster延误模型分别来求单进口放行方式下设置直左合用车道和没有设置直左合用车道情形下的总延误。结果表明:单进口放行方式下设置了直左合用车道放行效果更好。  相似文献   

3.
为科学合理地解决城市道路信号控制交叉口自行车交通流通行能力的计算问题,在分析大量实测数据的基础上,对信号控制交叉口自行车交通流的运行特征进行了分析,得出自行车停车排队密度随交叉口自行车道宽度增加而线性递减的关系。根据自行车在启动后匀加速到匀速行驶的特征,建立了自行车交通流启动时间-速度、时间-距离模型;根据实测数据,标定了自行车流排队膨胀模型;根据绿灯时间自行车流量与车道宽度之间明显存在的线性关系,建立了交叉口自行车饱和流量和通行能力计算模型,为形成交叉口自行车通行空间设计、混合交通流信号控制理论奠定了基础。  相似文献   

4.
为提升逆向可变车道交叉口通行效率,提出一种基于逆向可变车道交叉口信号配时优化方法.假设车辆到达服从泊松分布,基于逆向可变车道交叉口车流运行特征,构建了逆向可变车道交叉口通行能力和延误计算模型;以周期时长、主预信号控制、逆向可变车道长度及饱和度等为约束,交叉口通行能力最大和平均延误最小为目标,建立了交叉口信号配时双目标优化模型,采用模拟退火算法求解.选取南昌市某交叉口分析了其设置逆向可变车道后,在高、中、低流量及不同左转比例下的运行效果.结果表明,本文所提方法在不同流量下均能提高交叉口的通行能力并减少延误,且更适合高流量交叉口;当高流量交叉口左转比例大于 20%时,交叉口通行效率改善更加显著.  相似文献   

5.
以可接受间隙理论为基础,利用概率论的方法,对以有r种代表车型组成的混合车流进行分析。建立了无信号交叉口主车流服从韦布尔分布下的支路多车型混合车流的通行能力模型,发展了无信号交叉口的混合车流通行能力理论。  相似文献   

6.
城市道路两相位交叉口左转车道通行能力研究   总被引:1,自引:0,他引:1  
以无信号控制交叉口可插车间隙理论为基础,分析了常见城市道路两相位信号控制交叉口左转车的交通流特性,建立了左转车道通行能力计算模型,通过实例对模型中的参数进行了标定。运用Vissim 3.6仿真软件对实际交叉口交通环境进行模拟,得到单位时间允许左转车通过交叉口进口道的最大车辆数,与模型计算所得通行能力值相比较,两者相对误差小于10%,从而证明所建立模型具有较强的适用性。  相似文献   

7.
针对信号交叉口调头区域设置不合理的问题,选择传统四相位控制交叉口为研究对象,基于通行效率最优提出了最佳调头位置的计算方法.该方法首先通过建立左转与调头共用车道的损失时间模型,揭示了左转和调头车流在不同交通条件下的相互影响机理;其次基于不同流向车辆的概率分布函数,构建了信号交叉口左转与调头共用车道的通行能力计算模型,揭示了调头位置对共用车道通行能力的影响特征;最后以淄博市中心城区为例进行了实例分析.实验结果表明,该方法能使左转与调头共用车道的通行能力由432 pcu/h提升到509 pcu/h,提高了17.82%.  相似文献   

8.
信号控制交叉口自行车流体扩散模型   总被引:1,自引:0,他引:1  
如何确定信号控制交叉口自行车的通行能力对交叉口配时和渠化设计有重要意义。揭示了信号控制交叉口自行车流的运行特性,建立了自行车流体扩散模型,对不同交叉口宽度、不同信号配时的混合交通条件下交叉口自行车通行能力进行计算,得出交叉口宽度与自行车通行能力呈负线性相关。通过自行车流体扩散影响分析,得出自行车对机动车、尤其是同向右转及对向左转车辆的通行能力影响较大的结论。最后,根据哈尔滨市4个信号控制交叉口实际调查数据,得到考虑机动车影响的信号控制交叉口自行车通行能力计算结果,并与北京市观测值进行了对比。  相似文献   

9.
无信号交叉口通行能力   总被引:8,自引:1,他引:7  
以可接受间隙理论为基础, 利用概率分析方法, 对由多种车型组成的混合车流进行了分析, 在无控交叉口主路车流车头时距服从二阶Erlang分布条件下, 建立了支路多车型混合车流的通行能力模型, 发展了无控交叉口的混合车流通行能力理论, 通过实例分析, 并与其他模型比较, 本模型计算结果更接近实际情况, 相对误差只有16.6%。  相似文献   

10.
右置掉头与右转共用车道通行能力研究   总被引:1,自引:0,他引:1  
在中央分隔带宽度受限的情形下,掉头置于靠近中央分隔带的车道上,公交车等大型车辆的转弯半径过小,对交叉口的行车安全和交通效率均有不利影响.将掉头车道置于行车方向的最右侧与右转共用车道,可以有效解决此问题.文章通过借鉴通行能力手册HCM上直左、直右以及左右共用车道通行能力计算方法,在确定左转及掉头调整因子基础上,建立了交叉口掉头右置与右转共用车道的通行能力计算模型.研究结论可为掉头车道设计提供理论支撑.  相似文献   

11.
基于混合车流的公路无控交叉口行车延误模型   总被引:2,自引:1,他引:1  
为了预测公路无信号控制交叉口次要车流的平均延误时间,建立了由多种车型构成的混合交通流的行车延误模型.在对无信号控制交叉口车辆延误的形成过程进行系统分析的基础上,以可接受间隙理论为基础,采用概率分析方法,对由多种车型组成的混合车流特性进行了分析,在无控交叉口主路车流车头时距服从二阶Erlang分布条件下,建立了支路多车型混合车流的行车延误模型.通过与实际观测的支路行车延误对比分析,模型计算结果与观测的延误值接近,表明该模型较为符合公路无信号控制交叉口的实际情况.  相似文献   

12.
为了描述无信号交叉口混合车流的等待延误特性,论文建立了由大小两种车型构成的混合车流的等待延误公式。本文在分析了目前无信号交叉口延误研究方法存在某些不足的基础之上,以可接受间隙理论为基础,建立了无信号交叉口大小两种车型构成的次要车流的等待延误公式。通过选取适当的参数数据,分析了次要车流等待延误与主要车流流量、次要车流不同车型比例构成的关系,结果表明该公式较为符合无信号交叉口实际情况。  相似文献   

13.
为了解决现有无信号交叉口支路通行能力模型的假设过于理想化与计算误差偏大的问题,针对无信号交叉口常见1车道与2车道支路的各种车道功能划分,基于可接受间隙理论与主路车头时距服从M3分布,分析了无信号交叉口支路大小车型构成混合车队的交通流运行特性,建立了各种支路功能划分车道的通行能力模型;利用Vissim交通仿真软件,对模型的可靠性进行检验,并对模型进行简化以加强实用性。研究表明:当主路车流量为600~1 000 veh/h时,该模型误差小于2%。  相似文献   

14.
以可接受间隙理论和排队论为基础,利用概率论的方法,对无信号T型交叉口左转车的交通特性进行分析。建立了左转车流的服务率模型,及被对向直行车阻断且其后有直行车到达的左转车到达率模型。然后将两者引入排队系统修正判断无信号交叉口是否需要设置左转车道的概率模型,算出了一定左转率对应的临界车流量组合,并绘制了判断是否需要设置左转车道的临界车流量组合曲线。利用此曲线可判定无信号T型交叉口是否需要设置左转车道,对无信号交叉口的规划、设计、建设和管理等工程实践具有重要的指导意义。  相似文献   

15.
以当量人群描述非机动车和行人对机动车通行的共同影响,对城市无信号控制T型交叉口的交通流运行优先等级进行重新划分,共划分为5 级.将主路直行车流和横穿支路的当量人群流作为独立优先流,应用间隙接受理论,研究了各次级交通流的可能通行能力计算方法.考虑高等级次级交通流及横穿主路的当量人群流的影响,采用概率论方法研究了各次级交通流的可能通行能力修正系数,从而得到各次级交通流的实际通行能力计算模型,进而得到整个无信号控制T型交叉口的通行能力计算方法.结果表明,以当量人群描述非机动车和行人对机动车通行的共同影响计算过程简单,符合我国城市道路交叉口非机动车和行人多的实际情况.  相似文献   

16.
针对路口相关路段发生交通瓶颈现象时原有的路口控制策略很可能会产生溢流现象这一问题,在对周期内路段车流组成进行分析的基础上,应用集散波理论,分析了不同交通瓶颈通行能力对上游路口到交通瓶颈间路段溢流现象产生的影响,针对该影响,分析了交通瓶颈下游路口为消除该影响在控制策略方面应进行的调整,分析结果表明,下游路口某车道排队长度延伸至交通瓶颈可能会使上游路口在同样信号控制策略下从非溢流状态变为溢流状态;一方面可通过延长下游路口相关相位的绿灯时间来避免上游路口到交通瓶颈间路段的溢流现象;另一方面可以通过改变上下游路口间的相位差来消除交通瓶颈通行能力改变对溢流现象产生的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号