首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
为了掌握戈壁地区铁路沿线各种既有挡风墙的功效与不足之处,基于流体数值分析方法,对高度为3.0 m的不同形式挡风墙背风侧在不同风速条件下的流场进行了模拟计算分析。得到了不同形式挡风墙背风侧的流场特点、风向和风速变化规律:对拉式挡风墙背风侧的涡流特征显著,其大风遮蔽效应系数呈现出先降后升的规律性变化;而土堤式挡风墙背风侧不仅不存在涡流区,且大风途经土堤式挡墙后流场运动要素变化较小。计算数据显示,对拉式挡风墙的挡风效果优于土堤式;挡风墙高度为3.0 m时,对拉式挡风墙能够满足要求,而土堤式挡风墙则不能满足要求,需要加以改进。以上研究结论为铁路的安全运行与防风沙设计提供参考与依据。  相似文献   

2.
选用车型为棚车,采用SIMPLEC算法和QUICK精度格式的数值计算方法对强侧风下不同挡风墙类型、不同路堤和挡风墙高度组合棚车的气动性能进行研究.研究结果表明:在防风效果上,土堤式挡风墙最差,加筋对拉式挡风墙相对最优;挡风墙类型为加筋对拉式,当路堤高度一定时,随着挡风墙高度的增加,棚车的倾覆方向由顺风倾覆向逆风倾覆转变...  相似文献   

3.
随着兰新线上通过列车速度的提高,现有土堤式防风墙的防护效果亟需改善,考虑在原有挡风墙顶部进行局部加高改造。基于三维定常、不可压N-S方程与κ-ε双方程湍流模型,采用棚车为代表车型,在横风风速为50 m/s时,分别对不同加高高度的对称和非对称土堤式挡风墙条件下运行速度为120 km/h的货物列车所受气动力进行了数值模拟,以车辆倾覆力矩为考核指标分析挡风墙加高高度对棚车气动性能的影响。研究结果表明,在现有土堤式挡风墙顶部局部加高能有效地提高其对列车的防风作用;其对称土堤式挡风墙合理加高高度为0.28 m,迎风侧高度1 m和2 m的非对称土堤式挡风墙合理加高高度分别为0.62和0.49 m。结果为工程实际应用提供了理论依据。  相似文献   

4.
为提高新疆单线铁路土堤式挡风墙的防风效果,防止列车倾覆,提出只改变挡风墙的迎风侧坡角而背风侧坡角不变(方案1),以及挡风墙的迎风侧坡角和背风侧坡角相等且同步改变(方案2)的2种优化方案。采用数值模拟计算方法对比这2种优化方案对列车气动力系数的影响。结果表明:在列车处于静止状态下,方案1中挡风墙迎风侧最佳坡角为57°,方案2中挡风墙迎风侧和背风侧最佳坡角均为69°;在列车以20~120km.h-1速度运行的动态状态下,按方案1,为达到列车倾覆力矩为0的最佳防风效果,挡风墙迎风侧坡角也必须随着列车运行速度的增大而增大;而按方案2,挡风墙的迎风侧和背风侧坡角基本不随列车速度的变化而变化。因此建议在实际工程中采用方案2进行土堤式挡风墙坡脚的优化设计。  相似文献   

5.
戈壁强风区挡风构筑物限制下列车气动力学特性分析   总被引:4,自引:4,他引:0  
基于数值模拟分析结论,揭示了在风速为35.1 m/s条件下,2种不同既有挡风构筑物结构形式限制下的列车气动力学特性规律。首先计算得到平坦地表列车所受侧向压力为3 645 N,倾覆力矩为7 900 N.m;路基高度为4.0 m时,侧向压力为7 978 N,倾覆力矩分别为17 820N.m;在平坦地表上设置土堤式挡风墙后,侧向压力与倾覆力矩分别减小45%、36%,设置对拉式挡风墙后,侧向压力与倾覆力矩绝对值分别减小94%和96%;当路基高度为4.0 m时,设置对拉式挡风墙后,压力与倾覆力矩绝对值均减小94%。分析表明,在平坦地表上对拉式挡风墙的防护效果好于土堤式挡风墙,得出各种既有挡风构筑物墙后列车的气动力学特性参数指标,为既有挡风构筑物的优化以及后建工程措施提供参考。  相似文献   

6.
大风环境下YW25G型客车横向振动偏移量研究   总被引:1,自引:0,他引:1  
采用基于机器视觉的车辆动态偏移量检测方法,对YW25G型客车在大风环境下停留和运行时的横向振动偏移量进行了实车测试试验,提出了气动力作用下振动偏移量系数的概念,分析了列车在各种挡风墙后和无挡风墙区段停留时的横向振动偏移量系数,结果表明:得到YW25G型客车在风区停留时的最大横向振动偏移量为67 mm,在风区和非风区运行时的最大横向振动偏移量分别为141 mm和86 mm;无挡风墙时,YW25G型客车的气动力作用下的横向振动偏移量系数最大;在砼枕直插式和砼枕式挡风墙后时,该系数最小;在土堤式挡风墙后的相应系数最大;分别在加筋对拉式、加筋对拉加高式、桥式挡风墙后时,该系数则由小变大.  相似文献   

7.
加筋土式挡风墙优化研究   总被引:3,自引:0,他引:3  
研究目的:使车辆受到的气动力减小及挡风墙建设施工具有良好的经济性。研究方法:采用二维粘性不可压缩雷诺平均应力方程,在横风风速为35.1 m/s时,路堤高度、挡风墙高度、设置位置不同条件下,对加筋土式挡风墙背风侧车辆的气动力进行数值模拟计算。研究结果:确定了挡风墙最佳高度和最佳设置位置随路堤高度的变化规律。研究结论:随着路堤高度的增大,挡风墙最佳高度不断的减小,但减小的幅度越来越小,而挡风墙的最佳设置位置变化幅度较小,基本在3.4~3.5之间。  相似文献   

8.
谯泽诊 《中国铁路》2012,(10):65-68
结合兰新铁路“百里风区”既有挡风墙和其他防风设施,通过数值计算、列车空气动力学实车试验、车辆动力学试验和挡风墙前后风速分布现场试验等,分析在既有防风设施和大风条件下的列车气动性能与速度分布,找出既有防风设施的薄弱环节,提出对土堤式挡风墙、不同形式挡风墙及挡风墙与路堑过渡段、矮路堑的优化方案和改造措施.建议按危险程度分批次逐步实施改造,在补强改造设计时勘察现场,反复论证补强方案的安全性和可行性.  相似文献   

9.
利用CFD ICEM建立兰新铁路第二双线V区(大风频繁区)路堤、路堑地段4.0 m挡风墙和槽形梁两侧3.5 m高挡风墙计算模型,采用流体力学软件FLUENT对不同型式的防风结构的防风效果开展仿真分析。结果表明:环境风遭遇挡风墙阻挡,气流沿着挡风墙上部自由空间移动,形成加速效应,使得吹至挡风墙上部的环境风被加速放大;环境风吹过挡风墙后风速明显减小,挡风墙有效遮蔽了环境风,防风效果明显;路堤挡风墙后环境风速残余系数在0.3~0.6,路堑挡风墙后环境风速残余系数在0.25~0.50,桥梁两侧挡风墙后环境风速残余系数在0.3以下,桥梁两侧挡风墙防风效果优于路堤和路堑挡风墙。  相似文献   

10.
谯泽诊 《中国铁路》2018,(12):60-67
为探究南疆线是否满足动车组开行要求,通过实车试验的方法,发现南疆线既有防风设施部分区段不能保证动车组安全运行,需进行优化改造;在分析试验结果的基础上,对试验中出现大值点的地段进行详细现场勘查和影像记录,分析总结需优化改造的防风设施结构形式等信息,发现南疆线既有防风设施薄弱环节处于无挡风墙地段、桥梁挡风结构、土堤式挡风墙、过渡段等位置。通过数值模拟计算,对土堤式挡风墙、浅路堑和土堤式下坡风等提出具体改造思路和优化方案。通过推荐施工方案、开展现场验证,以达到满足动车组安全运行的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号