首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
针对传统液冷电池包内电池组散热不充分及表面温度一致性较差的问题,本文设计了一种基于风冷和液冷耦合 冷却策略的新型电池包结构,利用Catia软件建立三维模型并运用Fluent软件进行仿真,研究结果表明,相较于单一液冷 结构在2 C和2.5 C放电倍率下存在电池组过热问题,风冷液冷耦合的冷却结构在不同放电倍率下将最高温度和最大温差 分别控制在45 ℃和5 ℃以内。探究了不同流体进口速度对电池组散热的影响,并选取风速5 m/s,冷却液流速0.5 m/s的 最佳配合,在此基础上对流道进行针对性的优化,优化后电池组在同一工况下最高温度从27.95 ℃下降至26.82 ℃。这种 新型结构将为后续的电池的热管理设计提供新思路。  相似文献   

2.
为了对电池进行有效的热管理,文章提出一种采用微通道液体冷却的热管理方式,并基于COMSOL软件对一款磷酸铁锂软包电池仿真研究,分析了不同放电倍率下冷却剂流量、冷却剂入口温度对电池模组冷却性能的影响。结果表明,采用冷却方式可以将电池组的最大温差及最高温度均控制在允许的区间;增加冷却剂流量可以在一定程度上降低电池组的最高温度和最大温差,但是需要考虑泵送功的损失;降低冷却剂入口温度是降低电池模组最高温度的有效方式,冷却剂入口温度对电池组温度一致性影响很小。  相似文献   

3.
本文提出了一种将复合相变材料(石蜡(PA)混合膨胀石墨(EG))与空冷相耦合的电池热管理方案(简称APE-BTMS),该系统中电池中部采用PA/EG进行冷却,电池的上下端采用空冷(空气流速为1.23 m/s)。APEBTMS的主要目的是,将电池的工作温度冷却到最佳温度范围的同时,减轻整个电池热管理系统的质量。实验结果表明:APE-BTMS-45模型在相同的条件下展现了最佳的冷却性能;同时,基于COMSOL建立APE-BTMS数值模型,进行更加精细地轴向厚度和不同环境温度下对APE-BTMS冷却性能加以对比,经数值模拟结果进一步验证,APEBTMS-45在对比数据中具有最佳的冷却性能,并可最大轻量216.71 kg。本文的研究结果可为基于相变材料的电池热管理系统的设计开发提供参考和数据支撑。  相似文献   

4.
为了提高电动汽车动力电池系统的热安全性及可靠性,使得动力电池系统维持在正常的工作温度范围之内,该文基于柔性复合相变材料的控温特性,采用熔融共混与有机溶剂挥发相结合的方法,制备由苯乙烯-丁二烯-苯乙烯嵌段共聚物/石蜡/膨胀石墨(SBS/PA/EG)组成的柔性复合相变材料,并将其与板式热管耦合以显著提高动力电池热管理系统的均温和控温特性。结果表明:柔性复合相变材料(SBS/PA/EG)的导热系数在室温下可提升至0.62 W/(m·K),潜热焓值可达102 J/g。以柔性相变材料耦合板式热管作为电动汽车的电池热管理系统用在电池模组中,当电芯在3 C倍率下放电时,其最高温度控制在42℃之内,电池间温差缩小至1.0℃,显示出优异的控温及均温效果。  相似文献   

5.
为分析泡沫铜/石蜡复合相变材料的车用动力锂电池散热问题,建立了电池生热模型,给出了该复合相变材料在不同孔隙率下的热物性参数值,利用有限元法分析了材料包覆方式、材料厚度、对流换热系数、环境温度等对电池温度的影响。结果表明,四面包覆和双面包覆的复合相变材料比无相变材料的电池温度分别降低了10.36℃和12.56℃,冷却效果明显;增加材料厚度和对流换热系数以及降低周围环境温度,电池温度将降低;当电池表面温度处于相变材料的相变温度区间时,继续增加材料厚度和对流换热系数散热效果不显著;复合相变材料用量不充足时,相变潜热占主导作用,增加孔隙率将使电池温度先增大后减小。  相似文献   

6.
段志勇  马菁 《汽车工程》2023,(11):2047-2057
为满足锂电池成包后的温度一致性需求,本文提出一种基于热管与液冷板的复合冷却结构。利用数值模拟对液冷板内两种不同流道(流道Ⅰ和流道Ⅱ)的冷却性能进行对比,结果表明流道Ⅱ的冷却性能更优;采用正交试验法筛选出4个对流道Ⅱ冷却性能影响较大的结构因素作为设计变量,以电池组温差和冷却液压降为目标函数,建立设计变量与目标函数之间的Kriging代理模型并采用NSGA-Ⅱ遗传算法进行寻优。与初始结构相比,优化后的流道II对应的电池组温差和冷却液压降分别降低了10.52%和50.14%,而电池组最高温度仅升高了0.68%。本文的方法和结论可为热管式锂电池冷却结构的设计与优化提供借鉴。  相似文献   

7.
针对液冷型动力电池包冷却结构多因素参数化研究,搭建电芯电-热耦合仿真模型,通过台架试验验证了电芯仿真计算的有效性。对显著影响液冷型电池包性能的冷却液流速、冷却液温度及冷管宽度和高度4个关键参数进行四因素四水平正交试验计算,基于正交模型的模糊灰色关联分析法探究四因素对电池模组最高温度和最大温差的影响权重。结果显示:对于电池模组最高温度,冷却液的温度对其影响最大,冷却液流速次之,冷却管道宽度影响最小;而对于电池模组最大温差,冷却液流速对其影响最大。通过结果分析得到优化组合方案,计算得到优化方案能使得电池组最高温度下降到32.8℃,最大温差控制在3.3℃内,冷却性能表现最佳。  相似文献   

8.
通过实验研究了锂离子电池1C倍率放电,20℃自然对流情况下的温升特性。测得了20℃环境温度下电池的充放电内阻特性,并根据某品牌18650型锂离子电池的物性参数以及实验测得的内阻数据建立了电池单体仿真模型,仿真计算了与实验同工况下的温度分布情况,最大误差4.9%。设计了一种包含480节电池的并行通风空气冷却散热结构,并通过正交试验进行了优化,得到了进出风孔距电池的最小距离1mm,上挡板距离电池的最小距离1mm,下挡板距离电池的最小距离1mm的最优结构,使电池组的最大温升下降了5.71℃,最大温差降低了5.06℃。并基于最优结构给出了120s后每60s改变送风方向的往复送风策略,使电池组即使在40℃、2C放电的恶劣工况下也能够工作在25℃-40℃,电池单体温差5℃以下的工作环境中。  相似文献   

9.
为降低温度变化对隧道水泥砂浆材料强度和变形的影响,在隧道工程中引入具有自调温能力的相变材料,制备成相变材料水泥砂浆。首先,将石蜡、高密度聚乙烯和膨胀石墨熔融共混,获得复合相变材料;然后,掺入水泥砂浆中,得到新型相变水泥砂浆。通过搭建热响应测试平台,分析其热应变随温度变化规律,评估其蓄热性能,并对比得出相变材料对不同水灰比砂浆试样的热力学性能影响。结果表明: 复合相变水泥砂浆能发挥相变材料的蓄热性能,其相变潜热为34.82 J/g,热应变比普通水泥砂浆材料最大降低36.63%。相变材料的掺入有效降低了试样的表面温度和热应变,这对改善水泥砂浆材料的温度变形及控制裂缝的发展具有重要作用,可为能源地铁隧道及其裂缝修复等提供新型材料。  相似文献   

10.
电动汽车内电池组热管理十分重要,能够及时将热量散发出去保持电池包温度的稳定,就能在很大程度上解决电动汽车自燃爆炸的问题。论文设计一种电池风冷散热结构,通过对串行及并行风道进行一系列的优化设计,得出一种散热性更好的散热结构。通过ANSYS Fluent软件进行建模及仿真分析,通过附加散热孔、改进进风口位置及倾角进行结构优化,结果表明进风口倾角为8°时散热性及结构最优,其生热情况为在1 C充电倍率下电池组最大温差为3.9℃,最高温度为33.7℃,最低温度为29.8℃。  相似文献   

11.
采用数值模拟的研究方法,对比分析了某纯电车型在高速超速以及驱动耐久工况下动力电池包采用液冷和冷媒直冷两种方案的冷却性能,研究结果表明,对于高速超速工况,相对于液冷方案,采用冷媒直冷电池包温度降低了约10%;对于驱动耐久工况,采用冷媒直冷方案电池包温度降低了约 16%,与此同时,电池包均温性也有所改善。在相同工况条件下,动力电池包冷媒直冷的冷却性能优于液冷。  相似文献   

12.
彭豪  孟庆国  尹骞 《时代汽车》2022,(2):104-105
针对动力电池包热管理中系统温度不均匀的问题,本文以某款液体循环冷暖一体化热控方式的电池包为研究对象,通过Ansys-fluent对其液冷回路进压降仿真,并优化液冷回路,最后通过实验验证优化前后系统的散热/加热性能,得出流量均匀性越好在液冷和液热时,电池包内电芯间的温差越小,散热以及加热效率更高。为后续热管理设计可将流道的设计作为重点考察对象进行优化。  相似文献   

13.
为4 A·h的21700型锂离子电池研发了蜂巢式液冷电池模块,并通过搭建的试验平台测定其充/放电过程的传热特性。结果表明:在25℃环境温度下,0.5C恒流恒压充电和1C恒流放电过程中,电池模块的最大温差均被控制在2℃以内;40℃环境温度下,1C恒流放电过程中,当冷却液流量大于1 L/min时电池模块的最大温差能保持在所要求的5℃以内。说明蜂巢式液冷电池模块冷却性能优良,可为未来电池热管理方案的设计提供技术支撑。  相似文献   

14.
为解决车用锂离子动力电池在高强度工作过程中电池温度过高以及电池组温均性差等问题,需要对电池组设计合理的电池热管理系统(BTMS),以此提升电池组的冷却性能.首先阐述了热管理系统的常见冷却方式,分析了各种冷却方式之间的优缺点.随后针对应用最为广泛且最易实现的空气冷却方式,从冷却空气流型、电池排布方式、电池间距、冷却空气流...  相似文献   

15.
电动汽车动力电池散热需求会受到外部环境温度、风速和负载电流变化等因素的影响,如果不及时散热,动力电池的温度会迅速攀升,进而影响电动汽车的驾驶性和安全性。基于此提出一种锂离子电池非线性冷却优化方法。首先,通过对锂离子电池生热、散热机理分析,建立考虑传热系数随冷却液流速变化的锂离子电池集中热模型,通过电池特性测试试验确定电池内阻和熵热系数等热物性参数,并与AMESim模型对比,验证模型的有效性。然后,基于电池冷却系统非线性和易受负载电流变化影响的特征,提出一种考虑电池冷却系统的稳态特性以及参考变量前馈功能和闭环反馈消除静态误差机制的非线性冷却优化方法,并对其稳定性和鲁棒性进行研究。仿真结果表明:在NEDC-HWFET-US06组合工况下,非线性冷却优化方法调节下的电池温度与目标温度的最大偏差较PID方法减小了0.8 K,并且冷却过程的能耗降低了6.3%,具有更好的调节效果。  相似文献   

16.
电动汽车锂离子电池的生热特性   总被引:1,自引:0,他引:1  
对锂离子电池生热特性的研究是电动汽车动力电池热管理设计的基础。文章以电动汽车用11A·h电池单体为例,进行有限元建模分析,比较了它在不同环境温度下的生热特性。经过试验验证,测试结果与仿真分析相符合,该电池在环境温度为-20~40℃时以1C放电终止,温升为20℃左右。指出由于该电池推荐工作温度为30~55℃,因此使用时电池外部应配有加热系统;当电池放电倍率始终小于1C时,可不配置强制冷却系统。  相似文献   

17.
随着电动汽车销量的增加,动力电池的热安全问题日益受到关注,电池温度过高会影响电池的性能,严重时会导致热失控的发生。为研究锂电池的放电特性,探究不同因素对电池组往复流风冷散热的影响规律,基于外接UDF的Fluent仿真计算,利用正交试验,分析了入口风速、冷却空气温度、往复流周期三个参数对电池温度分布的影响规律。研究结果表明往复流周期对电池组温度分布均匀性的影响最大,入口风速对电池组最高温度影响最大,而冷却空气温度影响则相对较小。在此基础上,进一步获得了往复流散热性能的最优匹配参数。  相似文献   

18.
为了提高并联式混合动力汽车发动机和动力电池低温生存能力,探索发动机与电池冷却余热资源的利用新途径,提出了一种基于余热再利用的发动机和动力电池双向循环低温预热的新方法.建立发动机和动力电池余热数值模型,定量分析和研究余热系统的温升特点与温度分布状况,揭示了发动机与动力电池余热的传热规律,设计了基于相变材料的自动双向热控装...  相似文献   

19.
针对锂离子动力电池在不同条件下电池模组温度变化及热失控传播特性不明晰的问题,提出了基于不同填充材料的电池热管理模拟方案。利用COMSOL Multiphysics软件,以18650电池为研究对象,建立锂离子电池模组热电耦合模型,分析不同填充材料下充放电倍率、液冷流量、液冷管排数对正常电池模组温度的影响;探究不同填充材料对电池模组热失控传播的影响;结合电池热失控试验数据验证模型准确性。结果表明,填充材料和管排数对电池正常模组温度影响较大;填充材料为石墨时最佳液冷管排数为8根;PCM材料能将对热失控传播时间控制在40~50 s/颗,相比于石墨具备明显优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号