首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
针对欠驱动船舶轨迹跟踪控制问题, 考虑系统存在未知参数和外界扰动, 提出了一种带强化学习的神经网络自适应迭代滑模控制方法; 利用轨迹跟踪的横向和纵向误差信息构造非线性迭代滑模面, 分别设计了船舶柴油机转速和舵角的神经网络迭代滑模控制器; 根据船舶柴油机转速和舵角的实时测量值, 计算了反映控制量抖振状态的强化学习信号, 在线优化了神经网络的结构和参数, 以抑制控制量的抖振, 进一步增强控制系统的自适应性; 建立了5446TEU集装箱船舶数学模型, 分别对圆轨迹和正弦轨迹进行了跟踪控制。仿真结果表明: 在风浪扰动下圆轨迹跟踪时, 与迭代滑模控制策略相比, 采用提出的控制策略250s左右能跟踪上目标轨迹, 速度提高约1倍, 最大跟踪偏航距离为250m, 误差减小约30%, 控制舵角在400s后基本平稳, 波动幅值约为2°, 舵角和柴油机转速的抖振变化幅值均减小了50%以上, 柴油机转速控制参数和舵角控制参数分别在38~45和3.3~3.9之间实现了自适应调节; 在正弦轨迹跟踪时, 与模糊迭代滑模控制策略相比, 采用提出的控制策略纵向跟踪平均误差小于20m, 减小了50%以上, 舵角抖振量平均幅值小于10°, 减小了60%以上, 柴油机转速控制参数和舵角控制参数分别在5.7~5.8和0.8~2.5之间实现了自适应调节。  相似文献   

2.
针对欠驱动船舶在恒定速度航行下的路径跟踪问题,提出了一种在Serret-Frenet框架下,基于输入输出线性化的神经滑模控制算法.该算法利用Serret-Frenet框架下船舶运动方程的推导形式,将其转换为类似于直线航迹控制的问题,采用神经网络对基于趋近律的滑模控制进行优化,解决了趋近律滑模控制对系统模型的依赖性,提高了控制器的鲁棒性,并设计了状态观测器对控制对象状态进行重构,以解决系统状态量测量误差对控制效果的影响.在无干扰和存在干扰及参数摄动的条件下分别进行了仿真,结果表明该控制律具有良好的跟踪性能.  相似文献   

3.
船舶航迹迭代非线性滑模增量反馈控制算法   总被引:4,自引:2,他引:4  
分析了带有状态变量及控制输入约束条件的欠驱动船舶航迹控制问题, 结合增量反馈技术, 对控制系统输出进行动态非线性滑动模态分解迭代设计, 提出了一种基于分解迭代非线性滑模的船舶航迹增量反馈控制方法, 以避免定常干扰引起的稳态误差及变结构控制的抖振问题, 无需对不确定风、流干扰以及模型参数进行估计, 能够同时稳定船舶的航向和航迹。应用“育龙”轮的系统模型进行了仿真, 结果表明, 控制器对系统参数摄动及外界干扰不敏感, 具有强的鲁棒性, 且其设计参数物理意义明显, 易于调节。  相似文献   

4.
为了解决具有非线性和环境干扰的船舶动力定位系统的控制问题, 提出了一种基于线性矩阵不等式的滑模控制算法; 将跟踪误差设计为滑模函数, 设计线性矩阵不等式, 求解状态反馈增益; 基于二次型Lyapunov函数证明了闭环系统的稳定性; 设计切换函数, 使系统对不确定性和外加干扰具有较强的鲁棒性, 避免出现抖振现象; 对基于线性矩阵不等式的滑模控制器进行仿真, 计算出动力定位船舶在无扰动的匀速运动和有外界环境扰动的变速运动2种不同情况下的前进速度、横荡速度、艏向角速度、前进加速度、横荡加速度、艏向角加速度、前进控制力、横荡控制力和艏向控制力矩等; 分析了状态反馈增益线性矩阵、边界层、切换项增益等参数对控制性能的影响。研究结果表明: 采用基本滑模控制使前进速度达到期望值所需的上升时间为29s, 而新算法为15s, 节约了48.28%;采用基本滑模控制使横荡速度达到期望值所需的上升时间为24s, 而新算法为14s, 节约了41.67%;采用基本滑模控制使艏向角速度达到期望值所需的上升时间为13s, 而新算法为10s, 节约了23.08%。可见, 设计的控制器对有非线性和环境干扰的船舶动力定位系统都具有较强的鲁棒性, 具有控制输入连续、控制抖振小、不存在过高增益等特点。  相似文献   

5.
船舶运动控制表现出强干扰、时变、非线性、不确定、高可靠性要求的特点,其重要性和复杂性使其成为自动控制理论最为活跃的应用研究领域之一.智能控制以及各种智能技术集成的混合智能控制方法在这一领域得到广泛关注.文中分析比较了各种智能控制和传统榨制的特点、混合模式,介绍了混合智能控制应用于船舶运动控制的研究成果,指出了现有混合智能控制尚未有效解决的问题及船舶运动控制研究的发展方向.  相似文献   

6.
7.
欠驱动船舶非线性滑模靠泊控制器   总被引:1,自引:1,他引:1  
为了准确控制典型靠泊操纵, 分析了带有加速度非完整约束的欠驱动水面船舶的自动靠泊问题, 设计了动态输出反馈控制器。利用递归分解迭代设计方法, 在扩展状态空间定义了非线性滑模, 将控制系统的轨迹设计与跟踪问题转化为标量零阶系统的镇定控制问题, 结合增量反馈技术, 无需对不确定模型参数以及风、流干扰进行估计, 完成典型靠泊操纵的自动控制。仿真结果表明: 控制器对干扰变化不敏感, 具有强的鲁棒性, 且船舶平面运动轨迹设计过程简单, 可以仅通过一个参数进行轨迹调节。  相似文献   

8.
9.
为简化滑模控制器设计和提高变换器系统的鲁棒性,探讨了全局滑模控制的原理和设计方法,并用于设计Buck变换器的控制系统.分析了全局滑模控制Buck变换器的特点,给出了基于等效控制思想的全局滑模控制器设计步骤,并设计了全局滑模控制律.最后,通过仿真分析,探讨了全局滑模控制器应用于Buck变换器的可行性和有效性.仿真结果表明,设计的全局滑模控制Buck变换器较传统滑模控制Buck变换器的瞬态响应速度快,并具有全局鲁棒性.  相似文献   

10.
针对USV运动航向控制问题,利用基于Lyapunov稳定性理论的滑模控制方法设计USV航向控制律.考虑到USV运动系统具有不确定性,利用具有万能逼近性能的模糊系统对USV运动模型中不确定项及外界干扰项进行模糊逼近.为了进一步提高模糊系统的逼近性能,采用具有学习能力快的RBF神经网络对模糊系统进行在线学习,优化模糊规则.仿真结果表明基于RBF网络优化的模糊控制该算法能够实现USV航向连续稳定跟踪.  相似文献   

11.
应用滑模变结构控制方法设计了一种简单高效的船舶航向控制器.为解决滑模变结构控制器方法中的收敛速率慢和抖振强的难题,提出一种分段式双幂次趋近律.数学验证表明提出的趋近律的收敛速率更快.同时,在未知海况干扰下为使控制器时刻保持在最佳状态,引入RBF神经网络对控制器参数实施在线估计,增强自适应性.仿真结果表明:分段式双幂次趋近律削弱抖振效果明显,基本无抖振;依此方法设计的控制器对外界风浪干扰有更强的鲁棒性.  相似文献   

12.
高速受电弓滑模半主动控制   总被引:2,自引:0,他引:2  
为解决人工磁瓦表面缺陷检测质量不稳定的问题,提出了一种自动检测磁瓦表面缺陷的方法.首先利用磁瓦轮廓长度、面积等几何特征及轮廓匹配的相似度作为特征向量,采用支持向量机进行初次分类;然后再利用对凸凹缺陷的分析,得到缺陷数量和面积作为特征向量,采用最小均方误差分类器进行二次分类;最后对上述2步结果做与运算,得出最终判断.实验表明本方法可以达到正确识别率约为91.80%,错误接受率约为0.75%,正确拒绝率约为14.00%.   相似文献   

13.
双容液位滑模控制系统设计   总被引:2,自引:0,他引:2  
探讨了滑动模态变结构控制(滑模控制)设计原则,设计了一种滑模控制器,实现了两输入两输出非线性液位系统控制,并用组态王(Kingview)编制该控制软件,解决系统难于控制和抗扰动的问题.在线运行,体现了滑模变结构控制自适应能力强,动态、静态品质优良,鲁棒性好等优点,与传统PID控制进行比较,证实变结构控制的优越性.  相似文献   

14.
15.
为验证滑模控制用于含随机干扰的车辆跟随系统的可行性,建立了车辆跟随系统模型和相应的随机车辆动力学模型.用滑模控制法设计了随机车辆跟随系统的控制器.用向量Lyapunov函数法研究了控制系统稳定性,并得到系统指数均方稳定的充分条件.仿真中设置的随机因素为车辆的阻力.仿真结果表明,在5 s内跟随车辆的加速度和速度已接近领头车辆,车间距误差小于0.05 m.   相似文献   

16.
基于滑膜变结构车辆稳定性控制的仿真研究   总被引:1,自引:0,他引:1  
采用Magic Formula轮胎模型,运用MATLAB/Simulink软件建立了参考模型和二自由度非线性汽车模型;针对汽车ESP系统的非线性、时变的特点,基于滑模变结构控制理论,设计了以横摆角速度为控制变量的稳定性控制器;在湿滑路面上进行了转向行驶以及移线行驶工况控制效果的仿真分析.研究表明:所设计的控制器能够很好地控制车辆的横摆角速度和质心侧偏角,提高了车辆的稳定性.  相似文献   

17.
18.
车辆无人驾驶是智能交通系统的一个重要部分,其目标是开发在高速公路和城市道路环境下的辅助驾驶系统,旨在帮助乃至取代驾驶员,实现车辆自动控制和自动驾驶,减少交通事故发生,提高道路交通系统的效率,因此提出了一种基于机器视觉和模糊控制实现智能车辆自主行驶的方法. 该方法以CMOS摄像头为路径识别传感器,通过图像分析提取车道中心线,并引入速度反馈,形成闭环控制,建立一个由两个模糊控制器组成的分级模糊控制器控制车辆转向,并使用模糊控制代替传统的PID速度控制来控制速度. 和常规的PID算法及模糊控制算法相比,改进的模糊控制算法使智能车在道路上更快速、平稳地运行,并且在转弯处的超调更小.  相似文献   

19.
Autopilot vehicle is an important part of intelligent transportation systems. The objective is to develop the driver assistance systems on highway and urban road, to help or even to replace the driver, which may reduce traffic accidents and improve the efficiency of traffic system. A method based on machine vision and fuzzy control is proposed to realize intelligent vehicles' autopilot. It uses the CMOS sensor as its path recognition device to draw its lane centerline through image analysis. Taking the feedback speed as the additional input, the study forms the closed-loop control and establishes one graduation fuzzy controller which controls vehicle direction with two fuzzy controller combinations and replaces traditional PID control vehicle speed by fuzzy control. Compare with the conventional PID algorithm and the fuzzy control algorithm, the improved fuzzy control algorithm ensures a high speed and steady running of intelligent vehicle with smaller over modulation in corner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号