首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一种利用超级电容实现电动汽车再生制动能量回收的方法,对电动汽车再生制动中使用的储能装置——超级电容的控制系统进行了研究。介绍了一种基于CAN总线的DC—DC控制器的主回路拓扑结构及其控制策略,并详细说明了系统的软硬件设计。  相似文献   

2.
王春  唐滔  张永志 《汽车工程》2023,(4):627-636
超级电容荷电状态(SOC)的准确估计,直接决定了电动汽车的起动、爬升和加速性能,是电动汽车混合储能系统最重要的任务之一。为此,本文中提出了一种基于模糊熵加权融合的超级电容SOC估计方法。首先,利用粒子群算法辨识了-10、10、25和40℃下的戴维南模型参数,并且采用最近邻点法建立了其与温度之间的映射关系。然后,利用模糊熵设计了基于3种典型卡尔曼滤波的SOC加权融合估计方法。最后,选择自适应加权平均以及残差归一化加权融合的SOC估计方法用于进一步评估该方法的性能表征。结果表明,基于模糊熵加权融合的超级电容SOC估计方法能够提高超级电容SOC估计精度,尤其在高温环境(40℃)下提升效果更为显著。  相似文献   

3.
《中国电动车》2004,(5):32-33
超级电容是近几年才批量生产的一种无源器件,介于电池与普通电容之间。它具有电容的大电流快速充放电特性,同时也有电池的储能特性,并且重复使用寿命长,放电时利用移动导体间的电子(而不依靠化学反应)释放电流,从而为设备提供电源。  相似文献   

4.
超级电容在混合动力电动汽车中的应用   总被引:12,自引:0,他引:12  
]随着混合动力电动汽车研究的深入 ,超级电容独特的储能特性正日益受到人们的重视。本文在介绍超级电容的分类、特性、工作原理的基础上 ,提出了超级电容和蓄电池一起用于混合动力电动汽车 ,可以实现制动能量快速回收利用、发动机冷起动等 ,对混合动力电动汽车研究具有一定的参考价值。  相似文献   

5.
超级电容器作为一种新型储能器件,因其优越的功率密度,较高的能量密度被广泛应用于电动汽车、航空航天、电子通信等行业。本文采用原位水热合成的方法创新性地制备了MXene/Ni(OH)2复合材料,并对其作为超级电容器电极材料进行了结构和电化学性能研究。结果表明,复合材料由分层的MXene和覆盖在表面的褶皱Ni(OH)2纳米薄片组成。在1 A/g的电流密度下,MXene/Ni(OH)2的比电容高达1 897.2 F/g,显著高于单一MXene(103.1 F/g)和Ni(OH)2(1 383.3 F/g)的比电容。在8 A/g的电流密度下充放电1 000次后,其初始比电容保持率为92%,表现出优异的循环寿命,具有极大的实际应用潜力。研究发现的MXene和Ni(OH)2的协同作用为MXene基超级电容器电极材料的研究和应用提供了新思路。  相似文献   

6.
针对混合动力汽车,运用锂电池、超级电容性能特点组成混合储能系统(hybrid energy storage system,HESS)优化调节过程,提出基于混合储能装置性能的能量协调、互补控制策略。在Matlab/simulink软件中搭建系统模型,验证了控制策略的正确性和稳定性。  相似文献   

7.
理想的解决方案是当储能系统被充满以后,有一个装置可以长时间工作,消耗电机制动产生的能量,而电阻辅助制动系统是一个较好的选择,这样就可以避免超级电容混合动力公交车出现电容被充满后,电制动消失的问题。  相似文献   

8.
The Design of Hybrid Energy Storage System for Hybrid Electric Vehicles   总被引:2,自引:0,他引:2  
针对动力电池在混合动力汽车中频繁大功率充放电的问题,采用了电池和超级电容并用的能量存储系统,利用超级电容高功率特性来改善储能系统的性能.本文研究了电池与超级电容直接并联和主动并联两种混合能量存储系统,后者采用零电流转换软开关直流变换器来连接超级电容和电池.在Matlab Simulink平台建立零电流转换软开关直流变换器的动态模型、超级电容和电池模型,并在AVL Cruise中进行仿真.结果表明:直接并联方案不能充分发挥超级电容的能力;而主动并联方案降低了纯电动工况和制动能量回收工况下电池的峰值电流,电池端电压变化范围缩小,能量效率比单一电池的能量存储系统提高了14.92%.另外,由于采用了模糊PID控制算法,改善了动态响应性能.  相似文献   

9.
结合厦门金旅混合动力客车在多个城市公交实际运营的情况,分析纯超级电容混合动力系统储能优势,以及为适应复杂的城市公交路况,对储能模式进行深入研究和优化,创新性地提出以超级电容为主、动力电池为辅的储能模式,使用效果良好。  相似文献   

10.
《汽车实用技术》2013,(11):16-16
韩国光州科学技术院(GwangJu Institute of Science and Technology)研发出了一种神奇的石墨烯材料。研究者制造出了一款与锂离子电池具有相同容量的超级电容。在保持超级电容固有特性的同时,能够承受足够多的充放电循环次数。研究者利用超声波减少原料石墨烯中的氧化物粒子,形成内部多孔形式,其内部表面积巨大,可以容纳更多的电子。  相似文献   

11.
《公路》2017,(5)
超级电容型再生能制动能量回收技术,吸收车辆制动时剩余能量,并反馈至牵引网络中。传统控制策略采用基于PI控制的双向DC/DC变换器,但容易造成超级电容的过充、过放情况的发生,未考虑超级电容储能状态,因此效率较低。提出一种基于模糊PI控制的双向DC/DC变换器控制策略,引入超级电容实际储能情况,提高了系统效率。  相似文献   

12.
介绍采用超级电容作为储能系统的并联式混合动力客车的动力系统结构和原理,并对该车做一般城市实际公交工况的油耗试验以及中国典型城市公交工况下的油耗试验。油耗试验结果经计算表明,该车具有较好的节油效果。  相似文献   

13.
对超级电容的分类及性能进行了分析,并对我国十二五电动汽车科技发展规划、发展新能源汽车、城市公交BUS电动汽车的超级电容的应用必要性进行了论述,展望了电动汽车超级电容技术发展前景。  相似文献   

14.
为节约能源、降低排放,油电混合的混合动力汽车得到大力发展,作为电机的储能装置,传统的蓄电池功率密度低、循环寿命短,制约着混合动力汽车的发展.文章针对城市中运行的传统小型客车,首先根据整车的性能完成了电机和复合电源储能装置的匹配设计,通过DC-DC模块实现复合电源的功能,从而利用超级电容"削峰填谷"的特性,降低了频繁充放...  相似文献   

15.
简介了现代汽车的动力驱动的情况,明确指出当前汽车电动化是其主要的发展方向。简要分析了混合动力汽车的优势与在电动化方面的特点,明确了电能储存方式对汽车电动化的重要性,指出超级电容用于汽车上的优势,并简介了超级电容的类型、工作原理、充放电方式。论述了超级电容用于混合动力汽车上的关键技术问题,并对超级电容的其它应用领域进行了简介。  相似文献   

16.
提出一种“B+C”双电源纯电动客车驱动系统,即以能量型超级电容(C)为主要储能元件,辅以一定量的功率型锂电池(B);根据车辆运行工况的特点,设计了相应的驱动系统均衡控制策略,通过Matlab/Simulink对系统及控制策略进行仿真分析。  相似文献   

17.
超级电容器是一种储能装置,其原理是利用电化学双电层储能或在电极材料表面及近表面进行快速、可逆氧化还原反应而储存能量,具有较高的比能量、比功率和较长的循环寿命。介绍了超级电容器电极材料的储能机理、特点及应用,并对石墨烯、二氧化锰及其复合电极材料在超级电容器中应用的最新研究进展进行了重点说明。  相似文献   

18.
再生制动技术可以有效回收车辆制动能量,是提高电动汽车续驶里程的重要途径,超级电容具有高功率密度、高效率的特点,利用蓄电池-超级电容组成的复合电源作为电动汽车的储能装置可以改善电池工作状态,提高电池寿命及可靠性,并提高能量回收率。目前使用复合电源(蓄电池-超级电容)进行再生制动的电动汽车多采用并联形式,针对此类状况,基于无源串联复合电源结构设计其再生制动系统,其主要由电机、超级电容组、整流桥和控制器组成。在控制策略上,采用电压反馈恒定电流制动方式,基于脉冲宽度调制(PWM)控制,在制动过程中根据电动汽车车速与超级电容端电压实时调节PWM的占空比以实现目标制动电流恒定。在MATLAB/Simulink平台上建立再生制动系统仿真模型,验证所提控制策略的有效性,并利用某电动汽车对所设计系统进行滑行、制动等试验。研究结果表明:相比有源并联式复合电源,该系统不需要DC/DC转换器,结构及控制简单,该系统能够较好地实现制动能量回收,所采用的控制策略能够有效地实现恒电流制动,电制动减速度稳定,同时具有较高的能量回收率。  相似文献   

19.
以城市混合动力客车为例,介绍后置式超级电容舱的设计要求,分析常见后置式超级电容舱的优缺点,提出一种改进的电容舱布置方案。  相似文献   

20.
汽车制动能量再生系统复合储能方式研究   总被引:1,自引:0,他引:1  
对由铅酸电池与超级电容并联,并在铅酸电池与超级电容之间采用两象限DC/DC转换器控制的复合储能方式进行研究,建立其简化的等效电路模型,并从能量流的角度出发建立复合储能系统能量流模型,在Matlab/Simulink环境下对模型进行仿真计算,并在课题组搭建的汽车能量再生系统硬件在环仿真试验台上进行了试验,结果表明复合储能器能量回收率远高于单个储能器回收的能量值,并且复合储能系统的使用有利于制动能量回收与利用的优化管理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号