首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY

This paper is concerned with the braking performance and the handling behavior of the tractor-semitrailer truck under optimal braking. Optimal control theory is used in order to deal with the problem and a combination of the steepest descent method and the Davidon Fletcher Powell method is used to solve it numerically. Results for some chosen braking maneuvers are obtained for a nonlinear truck model which has 14 degrees of freedom. These results show that, for the chosen maneuvers an idealized anti-skid braking is close to being optimal in the sense defined in this paper. Implementation of an idealized anti-skid braking on the tractor-semitrailer truck, however, may be not desirable.  相似文献   

2.
This paper describes a study of anti-skid braking and the effects of such braking on the handling behavior and braking performance of a tractor-semitrailer truck. The truck, represented by a digital computer model having fourteen degrees of freedom, is taken to be in a cornering maneuver that involves braking and driver steering. Conventional braking or one of three types of anti-skid braking is used in the maneuver. The results show that the effects of anti-skid braking on the handling behavior and braking performance of the truck are beneficial. The results also show that the behavior of the wheels and the handling behavior and braking performance of the truck depend on the type of anti-skid braking used.  相似文献   

3.
ABSTRACT

This paper describes a study of anti-skid braking and the effects of such braking on the handling behavior and braking performance of a tractor-semitrailer truck. The truck, represented by a digital computer model having fourteen degrees of freedom, is taken to be in a cornering maneuver that involves braking and driver steering. Conventional braking or one of three types of anti-skid braking is used in the maneuver. The results show that the effects of anti-skid braking on the handling behavior and braking performance of the truck are beneficial. The results also show that the behavior of the wheels and the handling behavior and braking performance of the truck depend on the type of anti-skid braking used.  相似文献   

4.
This article presents a model for solving solid-fluid interactions in vehicles carrying liquids. A tractor-semitrailer model is developed by incorporating suspension systems and tire dynamics. Owing to the solid-fluid interaction, equations of motion for the vehicle system are coupled. To simplify the complicated solution procedure, the coupled equations are solved separately using two different codes. Each code is analyzed separately; but as the parameters of the two codes depend on each other, the codes must be connected at the end of each time step. To determine the dynamic behavior of the system, different braking moments are applied. As the braking moments increase, braking time decreases. However, it turns out that increasing the braking moment to more than a certain level produces no significant results. It is also shown that vehicles carrying fluids need a greater amount of braking moments in comparison to vehicles carrying solids during braking. In addition, as the level of the fluid inside the tanker increases, from one-third to two-third of the tanker's volume, the sloshing forces applied to the tanker's walls increase. It was also concluded that the strategy used in this article to solve for the solid-fluid interaction by incorporating vehicle dynamic effects represents an effective method for determining the dynamic behavior of vehicles carrying fluids in other critical maneuvers.  相似文献   

5.
The nonlinear equations of motion are derived for a tractor-semitrailer truck where both the itractor and the semitrailer yaw, pitch, roll, and translate. Special emphasis is placed on the constraints imposed by the fifth wheel on the vehicle motion. In particular, the effects of two proposed fifth wheel design changes on the jackknifing behavior of a vehicle in a turning, braking maneuver are studied. The results demonstrate that the tendency of the vehicle to jackknife can be reduced with a geometric modification of the fifth wheel.  相似文献   

6.
SUMMARY

The nonlinear equations of motion are derived for a tractor-semitrailer truck where both the itractor and the semitrailer yaw, pitch, roll, and translate. Special emphasis is placed on the constraints imposed by the fifth wheel on the vehicle motion. In particular, the effects of two proposed fifth wheel design changes on the jackknifing behavior of a vehicle in a turning, braking maneuver are studied. The results demonstrate that the tendency of the vehicle to jackknife can be reduced with a geometric modification of the fifth wheel.  相似文献   

7.
This paper presents a regenerative anti-lock braking system control method with road detection capability. The aim of the proposed methodology is to improve electric vehicle safety and energy economy during braking maneuvers. Vehicle body longitudinal deceleration is used to estimate a road surface. Based on the estimation results, the controller generates an appropriate braking torque to keep an optimal for various road surfaces wheel slip and to regenerate for a given motor the maximum possible amount of energy during vehicle deceleration. A fuzzy logic controller is applied to fulfill the task. The control method is tested on a four in-wheel-motor drive sport utility electric vehicle model. The model is constructed and parametrized according to the specifications provided by the vehicle manufacturer. The simulation results conducted on different road surfaces, including dry, wet and icy, are introduced.  相似文献   

8.
Simulation of Steering and Braking Behaviour of Tractor-Semitrailer Vehicles in Extreme Situations

This paper deals with the simulation of the behaviour of tractor-semitrailer vehicles at braking on wet, slippery road surface. The nonlinear model used for the computation enables to simulate extreme situations at wheel locking and swerving

The instabilities during braking such as jackknifing and trailer swing as well as non steerability are investigated. Straightline braking shows the influence of cornering on the behaviour during braking in a turn.  相似文献   

9.
SUMMARY

Simulation of Steering and Braking Behaviour of Tractor-Semitrailer Vehicles in Extreme Situations

This paper deals with the simulation of the behaviour of tractor-semitrailer vehicles at braking on wet, slippery road surface. The nonlinear model used for the computation enables to simulate extreme situations at wheel locking and swerving

The instabilities during braking such as jackknifing and trailer swing as well as non steerability are investigated. Straightline braking shows the influence of cornering on the behaviour during braking in a turn.  相似文献   

10.
汽车转弯制动性能的模拟计算   总被引:10,自引:0,他引:10  
本文是一篇研究汽车转弯制动性能模拟计算方法的专题论文。首先建立了11自由度的汽车动力学模型,模拟转弯制动开环试验方法,建立了非线性微分方程组,其初始条件通过计算汽车作圆周运动时的稳态转向特性求出。文中详细地介绍了各有关参量的计算方法,然后用四阶龙格-库塔法求出微分方程组的数值解,因此能够详尽地描述和研究各重要参数的变化情况及其对转弯制动性能的影响。最后给出四个典型算例,用以说明计算的可信程度。  相似文献   

11.
Summary This paper describes a flexible and modular 9-degrees-of-freedom nonlinear dynamic handling model for a tractor-semitrailer combination vehicle. The equations of motion are derived from the fundamental equations of dynamics in Euler's formulation, with the use of general computer-algebra software. The primary aim of the model is simulation of handling scenarios with active yaw control, using unilateral braking. However, it may also prove useful in other areas of tractor-semitrailer handling analysis or hardware-in-the-loop simulations. The model is formulated as a state-space model that may be implemented in standard simulation environments. A Simulink implementation is presented, and simulation results are compared with experiments to validate the model.  相似文献   

12.
应用虚拟样机技术进行半挂汽车列车制动动力学分析   总被引:3,自引:0,他引:3  
将虚拟仿真软件ADAMS应用到半挂汽车列车制动动力学研究中,建立了半挂汽车列车整车26自由度(DOF)动力学模型,对半挂汽车列车直线制动及转弯制动进干亍了仿真分析。通过仿真分析发现,在车辆无ABS转弯制动时,即使按照理想抱死顺序实施制动,半挂车也会出现瞬态“甩尾”的危险工况。  相似文献   

13.
Summary This paper describes a flexible and modular 9-degrees-of-freedom nonlinear dynamic handling model for a tractor-semitrailer combination vehicle. The equations of motion are derived from the fundamental equations of dynamics in Euler’s formulation, with the use of general computer-algebra software. The primary aim of the model is simulation of handling scenarios with active yaw control, using unilateral braking. However, it may also prove useful in other areas of tractor-semitrailer handling analysis or hardware-in-the-loop simulations. The model is formulated as a state-space model that may be implemented in standard simulation environments. A Simulink implementation is presented, and simulation results are compared with experiments to validate the model.  相似文献   

14.
This paper presents a review of theoretical and experimental works relative to the handling performance of commercial vehicle combinations. A commercial vehicle combination (road train) is defined as a tractor unit and an arbitrary number of trailers. The review contains literature corresponding the most widely used types of trains: tractor-semitrailer, truck-trailer and tractor-semitrailer-semitrailer (doubles). The vehicle dynamic performance has been investigated taking into consideration the following features: directional performance, roll dynamics, braking performance and combined braking and directional performance. With the aim of evaluating the present state of research activities in the field of lateral dynamics of articulated commercial vehicles, the author has compiled some 250 references.  相似文献   

15.
为研究半挂汽车列车在高速大转向等极限操作工况下的横摆稳定性控制问题,建立了14自由度的半挂汽车列车非线性仿真模型;提出了牵引车与半挂车独立直接横摆力矩控制的横摆稳定性控制方案,通过牵引车和半挂车车轮的合理选择和主动制动实现横摆控制;以跟踪参考模型的稳态横摆响应为目标,设计了PI横摆稳定性控制器,对牵引车和半挂车分别设计了目标制动车轮的选择决策规则。单移线操作仿真结果表明,基于主动制动的横摆力矩控制可有效改善极限工况下半挂汽车列车的横摆稳定性,牵引车与半挂车进行独立横摆控制可以减小制动车轮选择决策的复杂性,而获得较好的控制效果。  相似文献   

16.
There are basically two methods to control yaw moment which is the most efficient way to improve vehicle stability and handling. The first method is indirect yaw moment control, which works based on control of the lateral tire force through steering angle control. It is mainly known as active steering control (ASC). Nowadays, the most practical approach to steering control is active front steering (AFS). The other method is direct yaw moment control (DYC), in which an unequal distribution of longitudinal tire forces (mainly braking forces) produces a compensating external yaw moment. It is well known that the AFS performance is limited in the non-linear vehicle handling region. On the other hand, in spite of a good performance of DYC in both the linear and non-linear vehicle handling regions, continued DYC activation could lead to uncomfortable driving conditions and an increase in the stopping distance in the case of emergency braking. It is recommended that DYC be used only in high-g critical maneuvers. In this paper, an integrated fuzzy/optimal AFS/DYC controller has been designed. The control system includes five individual optimal LQR control strategies; each one, has been designed for a specific driving condition. The strategies can cover low, medium, and high lateral acceleration maneuvers on high-μ or low-μ roads. A fuzzy blending logic also has been utilized to mange each LQR control strategy contribution level in the final control action. The simulation results show the advantages of the proposed control system over the individual AFS or DYC controllers.  相似文献   

17.
SUMMARY

This paper presents a review of theoretical and experimental works relative to the handling performance of commercial vehicle combinations. A commercial vehicle combination (road train) is defined as a tractor unit and an arbitrary number of trailers. The review contains literature corresponding the most widely used types of trains: tractor-semitrailer, truck-trailer and tractor-semitrailer-semitrailer (doubles). The vehicle dynamic performance has been investigated taking into consideration the following features: directional performance, roll dynamics, braking performance and combined braking and directional performance. With the aim of evaluating the present state of research activities in the field of lateral dynamics of articulated commercial vehicles, the author has compiled some 250 references.  相似文献   

18.
Two nonlinear lateral control algorithms are designed for a tractor-semitrailer type commercial heavy vehicle. The baseline steering control algorithm is designed utilizing input-output linearization. To enhance the lateral stability and furthermore reduce tracking errors of the trailer, braking forces are independently controlled on the inner and outer wheels of the trailer. The coordinated steering and braking control algorithm is designed based on the multivariable backstepping technique. Simulations conducted using the complex model show that the trailer yaw errors under coordinated steering and independent braking force control are much smaller than those without independent braking force control.  相似文献   

19.
SUMMARY

The purpose of this paper is to develop a procedure based on covariance analysis and nonlinear programming techniques which can be used for the parameter selection of optimum truck suspensions. The procedure is applied to explore the differences in parameter selection caused by the changes in the frequency content of the road input or by changes in the criteria for optimization. The equations of motion for a tractor-semitrailer truck are cast in state space form. The road excitations are represented by the output of a white noise excited shaping filter taking into consideration the time delays between the different vehicle axles. Shape filters to represent human perception of vibration in both the vertical and longitudinal directions in the time domain are presented and realized in terms of state variables. The suspension parameters of the road-vehicle-human body system are optimized using a direct search algorithm.  相似文献   

20.
排气制动和发动机制动是重型载货车使用最广泛的辅助制动,但需要驾驶员熟练掌握辅助制动的方法,本文首先总结了辅助制动的操作方法;然后在高速公路和山区公路上,对某重型载货车采用制动淋水、辅助制动以及辅助制动和制动淋水相结合的三种方式,试验辅助制动对制动蹄温度的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号