共查询到20条相似文献,搜索用时 62 毫秒
1.
针对目前岩石力学处理工程问题的缺陷,探讨如何将前沿的计算技术与传统的力学实验相结合,以确定隧道工程中的围岩岩体力学参数,并提出了一些建议和方法。 相似文献
2.
3.
围岩岩体声发射规律数值力学试验 总被引:1,自引:0,他引:1
通过对诸永高速公路磐安段西华岭隧道围岩中凝灰岩岩体,开展了数值力学试验,在确定连续微元尺寸δc及各项基本力学参数的基础上,试验获得的序列不同尺寸岩体变形破坏过程声发射频率、声发射能量图,进一步描述了该围岩岩体的声发射特征。 相似文献
4.
依托贵州省在建的新寨隧道,用 ABAQUS 有限元软件建立计算模型,模拟隧道施工过程中围岩及衬砌结构的变形和受力特征。考虑地下水的作用,计算了围岩的孔隙水压力和分布规律。分析结果表明:隧道开挖过程中,围岩存在一定程度的应力释放,隧道拱顶和仰拱底部局部会出现较小的拉应力,而在隧道边墙部分则出现应力集中的现象。隧道开挖应力影响范围约为2倍洞径,在1倍洞径范围内影响较大,不宜在不作处理的情况下修筑其他地下空间结构。隧道围岩塑性区沿隧道径向影响范围约为4 m。 相似文献
5.
不同围岩和埋深条件下隧道围岩位移和应力变化规律分析 总被引:1,自引:0,他引:1
采用FLAC3D计算了II~V级围岩在30 m、100 m、200 m、300 m、400 m和500 m埋深下的拱顶沉降和塑性压力,II和III级围岩拱顶沉降(包括开挖面拱顶沉降和最终拱顶沉降)随埋深呈线性增大,IV和V级围岩拱顶沉降随埋深呈非线性快速增大;开挖面拱顶沉降收敛比(开挖面拱顶沉降占最终拱顶沉降的百分比)随埋深增大而减小,随围岩等级降低而减小,表明深埋弱围岩中隧道要趁早支护。围岩塑性压力随埋深增加而增加、随围岩等级降低而增加,表明深埋弱围岩隧道支护结构受到的围岩压力大。最后对围岩应力集中及其影响因素进行了分析。 相似文献
6.
《国防交通工程与技术》2021,19(5)
围岩承载拱理论可很好地解释隧道施工过程中围岩是承载主体,特别是挤压性围岩隧道支护抗力远小于初始地应力,围岩承载主体地位更为突出。围岩强度应力比是挤压性围岩隧道变形分级的主要判别指标。从围岩承载拱理论出发,推导了基于强度应力比的挤压性围岩隧道承载拱理论解,建立了围岩承载拱范围与挤压性围岩隧道变形分级的定量关系。研究结果表明:挤压性围岩隧道围岩承载拱厚度随围岩强度应力比减小而增大,随隧道洞径增大而增大,随围岩强度减小而增大,随初始地应力的增大而增大,随支护抗力的减小而增大;通过地层注浆加固改善围岩强度及通过增大支护刚度而提高支护抗力,均可有效降低承载拱厚度,从而提高围岩稳定性。研究成果可为挤压性围岩隧道设计施工提供理论支撑。 相似文献
7.
软岩围岩稳定性及加固数值分析 总被引:2,自引:1,他引:2
以龙滩大型水电站工程的地下洞室结构模式为背景,用数值模拟方法研究了4种软岩在4种埋深条件下洞周围岩破坏的变化规律,同时对围岩不稳定的工况施加锚固支护,并与毛洞模拟开挖结果加以比较. 相似文献
8.
9.
山岭隧道在施工过程中常同时穿越多条近平行的断层系,极易引起开挖面岩体失稳、围岩大变形、塌方等地质灾害。基于问腰隧道工程,以穿越近平行双断层破碎带的山岭隧道为对象,采用FLAC 3D软件对其分层开挖过程进行数值模拟分析,研究了近平行双断层破碎带的间距与倾角对围岩变形特性的影响规律。研究结果表明:断层破碎带为隧道施工开挖的薄弱部位,其位移量值明显大于上、下两盘内围岩位移量值;当两条近平行断层带间距为10m时,两条断层破碎带内隧道开挖所诱发的围岩位移将产生明显相互干涉影响,其量值大于单条断层破碎带内围岩位移量值;随着平行断层带倾角的增大,围岩位移量值逐渐减小;平行断层带间距越小,破碎带内围岩位移量值越大。 相似文献
10.
铝合金焊接凝固过程应力应变及凝固裂纹数值模拟 总被引:1,自引:0,他引:1
建立了一种焊缝凝固裂纹力学分析模型。在焊缝凝固过程中,对固液混合区金属采用了基于流变力学观点建立的力学木构方程,在焊接凝固过程应力应变分析的基础上,编制了数值计算源程序。计算了铝合金LY12CZ不同熔敷焊接(Bead-on-plateWelding)条件下焊缝凝固过程的应力应变,并进行了凝固裂纹的预测。计算结果定量地揭示了焊缝凝固过程应力应变的变化规律,并从力学角度揭示了焊接条件对焊接凝固裂纹形成的影响。 相似文献
11.
将锚杆作用力视为体力作用于围岩内, 将初期支护与锚杆锚固范围内的围岩视为围岩加固体, 建立了围岩力学模型, 基于统一强度理论分析了隧道蠕变条件下的围岩应力与变形规律, 推导了复合衬砌应力与变形表达式, 分析了隧道围岩蠕变过程中支护结构受力特点及不同初期支护强度下二次衬砌受力变化规律。分析结果表明: 当初期支护按照“初期支护应与围岩共同受力且能保证施工阶段安全”的原则进行设计时, 在围岩蠕变作用下, 锚杆与喷射混凝土最大受力分别为48、286kPa, 与开挖阶段相比分别增大了57.5%、13.7%, 且超过支护结构最大承载力, 说明在进行初期支护设计时, 仅满足隧道开挖过程中围岩稳定而不考虑蠕变产生的附加应力影响, 可能造成隧道运营过程中初期支护结构破坏, 不利于隧道稳定; 当二次衬砌厚度由300mm增大至500mm时, 二次衬砌最大受力增大了40.5%, 荷载分担比由25.2%增大至36.2%, 而增大初期支护强度后, 二次衬砌受力减小了14.5%, 荷载分担比由25.2%减小至22.3%, 说明二次衬砌荷载随初期支护强度增大而减小, 而随自身强度增大而增大, 应重视初期支护与二次衬砌支护强度的协调配置, 实现围岩压力的合理分配; 在软岩地质条件下, 应保证隧道施工过程中围岩稳定并避免围岩蠕变过程中发生结构破坏, 以实现初期支护与二次衬砌共同承担蠕变引起的附加应力。 相似文献
12.
随着国内外公路隧道建设规模和数量的日益增多,隧道围岩稳定性研究的方式与方法也变得多样化.笔者全面阐述了国内外公路隧道围岩稳定性理论与试验研究的现状,并分析了今后研究的主要发展趋势. 相似文献
13.
从弹性力学的空间轴对称问题出发,从理论上推导建立了竖井竖向附加力的应力表达式.分析该应力表达式可知,在竖向附加力作用下,井壁所受的径向、环向压应力值均为零,竖向附加力对井壁的作用主要体现为轴向压应力,且轴向应力在沿井壁厚度方向几乎无变化,因而可以将作用在井壁外侧的竖向附加力等效为作用在井壁横截面上的均布力.利用该应力表达式对某铁矿竖井井壁竖向附加力进行了计算,得到了井壁应力状况. 相似文献
14.
徐林生 《重庆交通大学学报(自然科学版)》2006,25(3):32-35
隧道新奥法施工中,常以围岩变形量作为评判围岩稳定性和支护结构合理性的重要指标.公路隧道围岩变形量是随时间而变化的数据序列,因而可以建立一些实时跟踪预测模型和方法.本文根据阳宗隧道围岩拱顶下沉位移变形的特性,采用神经网络技术来预测其变形量,结果表明该方法简易、有效. 相似文献
15.
阳宗隧道围岩变形的神经网络技术预测 总被引:1,自引:0,他引:1
徐林生 《重庆交通学院学报》2006,25(3):32-35
隧道新奥法施工中,常以围岩变形量作为评判围岩稳定性和支护结构合理性的重要指标.公路隧道围岩变形量是随时间而变化的数据序列,因而可以建立一些实时跟踪预测模型和方法.本文根据阳宗隧道围岩拱顶下沉位移变形的特性,采用神经网络技术来预测其变形量,结果表明该方法简易、有效. 相似文献
16.
朝东岩隧道爆破掘进中围岩振动测试与分析 总被引:4,自引:0,他引:4
通过对朝东岩公路隧道爆破掘进过程中围岩振动的测试和数据分析 ,结果表明在隧道爆破掘进过程中 ,采用分段控制爆破在围岩中产生振动效应并不随同时起爆的装药量成正比增长 ,振动最大的是掏槽爆破 .不同围岩类别的应力波衰减规律有明显的差异 ,且均可用萨道夫斯基经验公式较好地模拟 .同时在围岩内应力波的频率有明显的变化规律 .实际施工爆破方案优越于理论爆破方案 相似文献
17.
分析了采用中隔壁法施工时隧道中隔壁的变形特性, 研究了中隔壁变形和水平荷载之间的内在关系, 提出了一种新的隧道水平围岩压力计算方法。采用结构力学分析理论, 建立了中隔壁变形和水平围岩压力之间的关系, 利用中隔壁变形监测数据, 得到水平围岩压力。基于天恒山土质浅埋隧道Ⅴ级围岩, 采用谢家烋法计算的水平围岩压力为88~145 kPa, 采用新算法计算的水平围岩压力为110 kPa。其中, 当围岩摩擦角为45°时, 采用谢家烋法计算的水平围岩压力为115 kPa, 与采用新算法计算的水平围岩压力接近, 两者相差5 kPa, 验证了新算法的可行性。 相似文献
18.
详细阐述了公路隧道施工过程中 ,主要围岩变形破裂 (诸如塌方、大变形、岩溶型涌水涌泥砂、岩爆等 )类型、等级的判定方法和依据 ,这对信息化施工和及时采取相应针对性工程防治措施等均具有重要的理论与实践指导意义 . 相似文献
19.
Xiao-rui Wang Yuan-han Wang Xiao-feng Jia 《西安交通大学学报(英文版)》2009,21(1):22-30
Because of complexity and non-predictability of the tunnel surrounding rock, the problem with the determination of the physical and, mechanical parameters of the surrounding rock has become a main obstacle to theoretical research and numerical analysis in tunnel engineering. During design, it is a frequent practice, therefore, to give recommended values by analog based on experience. It is a key point in current research to make use of the displacement back analytic method to comparatively accurately determine the parameters of the surrounding rock whereas artificial intelligence possesses an exceptionally strong capability of identifying, expressing and coping with such complex non-linear relationships. The parameters can be verified by searching the optimal network structure, using back analysis on measured data to search optimal parameters and performing direct computation of the obtained results. In the current paper, the direct analysis is performed with the biological emulation system and the software of Fast Lagrangian Analysis of Continua (FLAC3D. The high non-linearity, network reasoning and coupling ability of the neural network are employed. The output vector required of the training of the neural network is obtained with the numerical analysis software. And the overall space search is conducted by employing the Adaptive Immunity Algorithm. As a result, we are able to avoid the shortcoming that multiple parameters and optimized parameters are easy to fall into a local extremum. At the same time, the computing speed and efficiency are increased as well. Further, in the paper satisfactory conclusions are arrived at through the intelligent direct-back analysis on the monitored and measured data at the Erdaoya tunneling project. The results show that the physical and mechanical parameters obtained by the intelligent direct-back analysis proposed in the current paper have effectively unproved the recommended values in the original prospecting data. This is of practical significance to the appraisal of stability and informationization design of the surrounding rock. 相似文献
20.
选取软塑黄土层分布于隧道拱顶、洞身和隧底3组典型断面开展实测研究,分析了软塑层影响下的围岩变形特征、支护结构力学特征及其差异性,提出了基于实测数据确定支护特性曲线的方法,揭示了软塑黄土层影响下的围岩与支护动态作用机制,给出了相应的防控理念及措施。分析结果表明:隧道围岩变形由大到小依次为软塑黄土层分布于拱顶段、洞身段和隧底段;软塑黄土层分布于拱顶段支护结构拱肩和边墙脚、洞身段拱腰及其以下位置、隧底段拱部和仰拱承受较大围岩压力作用;支护结构承受主要荷载来压方向不同、围岩应力随开挖步序释放率不同及地下水渗流路径不同是3组断面支护结构应力存在差异的直接原因;软塑黄土层分布于拱顶和洞身段时,围岩超前应力释放率约为35%,上台阶开挖支护结构力学性能迅速恶化,软塑黄土层分布于隧底段时,下台阶开挖软塑黄土层对支护结构将产生显著影响;针对上述3类工况,提出的强支护、控侧压和防突沉的防控理念及超前帷幕注浆、大锁脚和基底袖阀管注浆等施工控制措施可有效避免施工灾害的发生。 相似文献