首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了探明潜艇水下悬停控制系统的工作原理,为其工程设计提供初步的理论基础,对潜艇水下悬停实际操纵运动情况进行分析,找出了造成潜艇悬停深度不稳定的主要原因。然后分析了潜艇悬停运动的特征,由此建立了潜艇水下悬停运动的数学模型及干扰力计算模型,并对潜艇水下悬停运动的控制进行了仿真研究。数值仿真结果表明,与手动控制潜艇悬停相比,自动控制潜艇悬停能更好地控制潜艇深度。  相似文献   

2.
朱世开  李明  林莉 《中国水运》2007,7(1):49-50
潜艇水下悬停是指潜艇在水下无航速时深度的保持和变动。它是一个非线性过程,随潜艇状态及航行环境的不同而有很大变化,传统控制方法缺乏自适应能力从而影响了控制效果。本文简要论述了潜艇水下悬停的概念及对潜艇的意义,研究分析了潜艇水下悬停运动的数学模型及干扰力数学模型,将RBF径向基网络控制技术引入潜艇水下悬停过程,通过仿真证明RBF径向基网络控制与传统的控制方式相比有优势。  相似文献   

3.
潜艇阴极保护效果和水下腐蚀静电场分布会随着海水电导率、海床电导率和海水深度等海洋环境的变化而改变。采用有限元法建立潜艇外加电流阴极保护下的水下腐蚀静电场模型,求解不同海水电导率、海床电导率和海水深度等海洋环境因素下潜艇表面电位、阳极输出电流和水下电场分布。结果表明:阳极保护电流随着海水电导率的增大而显著增大,而海床电导率和海水深度对阳极保护电流影响较小;水下电场峰值随着海水电导率、海床电导率和海水深度的增大而减小。  相似文献   

4.
潜艇水下发生舱室破损事故后,操纵潜艇使其在某一较浅深度定深航行是一种非常重要的动力抗沉手段,对保持潜艇的水下隐蔽性意义重大。基于潜艇垂直面运动非线性方程,对潜艇首、中、尾部舱室分别发生破损时的定深操纵运动进行仿真,分析潜艇在上浮及保持深度过程中的运动特性,并提出相应的高压气应急使用方法。  相似文献   

5.
通过分析不同深度条件下潜艇发射鱼雷时的能量消耗,提出利用海水静压力差作为潜艇大深度发射鱼雷的一种原动力补充能量,为潜艇水下大深度发射鱼雷能量储备与使用探索出一条新的思路。  相似文献   

6.
本文概括介绍了潜艇水下操纵常见的两类主要事故的由来与危害以及应急操纵的基本概念,论述了水下状态潜艇的流体静力学特性与升降舵的动力学特性,及它们对潜艇运动状态与应急挽回操纵的影响,揭示了潜艇水下操纵运动过程中纵倾与深度易变化、不稳定的力学上的根本原因,对提高潜艇操纵的安全性有重要指导作用。  相似文献   

7.
潜艇水下破损后,采用正确的航速对成功挽回潜艇深度和纵倾起着至关重要的作用。本文通过建立潜艇水下破损时的运动模型,并在该模型基础上就航速对破损潜艇动力抗沉效果的影响进行分析,提出了不同破损面积、不同深度情况下分别应采取的增速措施。潜艇深度越大,破损面积越大,所需的抗沉速度就越高,以迅速形成有利纵倾使艇上浮。仿真计算结果表明了所建模型的合理性以及所采取措施的可行性。  相似文献   

8.
《舰船科学技术》2013,(7):109-114
潜艇在水下发射导弹瞬间受到巨大的发射反冲力和复杂的水动力作用,平衡状态受到破坏。而连续发射又要求潜艇必须在规定时间内恢复到发射导弹允许的深度和姿态,这对潜艇的操纵控制提出了很高要求。在分析导弹潜艇发射阶段受到的静力、艇体水动力和复杂激变力的基础上,结合潜艇空间运动方程,建立用于仿真的潜艇水下发射导弹操纵运动数学模型。在此基础上,编制潜艇水下发射导弹仿真试验平台,分别对潜艇水下导弹单独发射和导弹齐射时的运动过程进行仿真。通过大量的仿真分析,对潜艇水下发射导弹阶段特别是导弹齐射时可能采用的操纵方式作了定性探索。  相似文献   

9.
介绍了用于潜艇实验的水下微光高速摄像系统,并对设计的关键技术做了论述.根据潜艇上的实际情况,设计了最优的设备工作布局,使全系统能发挥最佳的效果.分析了水下30-40 m的光照度,进而设计了适合的水下照明方案,尽量采取微光照明的方式,使环境散射达到最低.最后将该系统应用于水下微光高速摄像试验,实验证明该系统在水下重要武器,尤其是水下潜艇等实验中具有广阔的应用前景.  相似文献   

10.
基于模糊控制与遗传算法的潜艇自动舵设计与实现   总被引:1,自引:0,他引:1  
在潜艇六自由度模型的基础上,根据一阶二阶波浪力对于航行在近水面潜艇深度的影响,采用模糊控制技术和遗传算法设计了基于二级模糊控制的遗传算法调整控制参数的潜艇自动舵控制系统.通过在近水面和水下两种状态对控制器性能仿真与结果分析,说明该自动舵具有很好的控制效果,响应较快,静差较小,具有较强抗干扰能力,对于近水面的深度控制有稳定的控制作用.  相似文献   

11.
第二次世界大战期间,鉴于盟军运输舰艇在大洋上被德军潜艇累累击沉,美国海军决定用潜艇从水下运送兵力和物资,于1944年将一艘老式作战艇改装成水下运输潜艇,取名为“海狮”号,这便是世界上最早的运输潜艇。 由于水下运输潜艇活动隐蔽,有攻其不备、出奇制胜之效,且水下运输不受气象和水文等条件的影响,在登陆作战中能够增加登陆成功的可能性,因此,水下运输潜艇出现之后,立即引起了人们的极大关注。1958年,美国正式建造了世界上第一艘水下运输潜艇“灰鲸”号。“灰鲸”号在  相似文献   

12.
对于使用斯特林发动机的第5代非核动力潜艇,研究了不同排水量下的潜艇设计方案,得到了水下最大航速、水下经济航速、水下低噪声航速、水下不间断续航力、斯特林发动机需求功率等主要技战术性能指标之间的关系,并对不同水下排水量的潜艇设计方案进行了比较。本文对于使用斯特林发动机用于第5代非核动力潜艇设计具有参考价值。  相似文献   

13.
小型潜艇     
意大利米兰基地的水下工程海洋潜艇供应商行,已建成世界第一艘使用一部90马力闭合回路式柴油机的小型潜艇。这艘被称为“凤凰1350型”的小型潜艇,艇体全长11.4米、宽3米,高3米、艇重25吨计算下潜深度701米,水下作业时救生系统可供193  相似文献   

14.
当潜艇由于各种意外事故造成艇体或通海管路破损进水后,具有淹水舱的潜艇在车、舵和高压气吹除作用下的挽回运动过程复杂而危险。文章借助Laval喷管理论建立了高压气吹除主压载水舱的模型,从而建立起包括舱室进水,用车用舵和舱室吹除等因素在内的,考虑了大攻角影响的潜艇挽回六自由度空间操纵运动模型。同时,针对不同进水部位、不同进水方式和不同航行深度等因素,计算得到了典型的潜艇水下操纵性安全界限图中的进水限制线。  相似文献   

15.
潜艇水下悬停是指潜艇在水下无航速时深度保持和变动,它是一个复杂的非线性过程。传统的控制方法缺乏自适应能力,影响了控制效果。模糊控制能够很好地解决上述问题。本文从模糊控制原理出发,确定悬停控制的模糊控制器结构,根据典型的阶跃响应指定了潜艇悬停的模糊规则,采用Simulink完成自抗扰微分器的程序设计。通过对2种典型工况进行仿真,表明模糊控制器能在潜艇定深悬停中起到很好的控制效果,并具有超调量小、调整时间短及鲁棒性好的优点。  相似文献   

16.
常规动力潜艇亦称为柴-电潜艇,其具有三种航行状态:水面航行状态、通气管航行状态、水下巡航状态.前两种航行状态的动力由柴油机或发电机提供,而真正隐蔽的水下巡航的动力来源于艇上的蓄电池组.由于艇载蓄电池的数量和容量有限,因此,水下巡航的潜艇间隔一段时间(几小时或几天)必须浮出水面,通过柴油机为蓄电池充电.这时,处于暴露状态的潜艇极易被敌方的各型反潜设备捕捉到并受到攻击,从而丧失了对抗的主动权.  相似文献   

17.
金涛  刘辉  王京齐  杨枫 《船舶力学》2010,14(1):34-43
当潜艇由于各种意外事故造成艇体或通海管路破损进水后,具有淹水舱的潜艇在车、舵和高压气吹除作用下的挽回运动过程复杂而危险.文章借助Laval喷管理论建立了高压气吹除主压载水舱的模型,从而建立起包括舱室进水,用车用舵和舱室吹除等因素在内的,考虑了大攻角影响的潜艇挽回六自由度空间操纵运动模型.同时,针对不同进水部位、不同进水方式和不同航行深度等因素,计算得到了典型的潜艇水下操纵性安全界限图中的进水限制线.  相似文献   

18.
《舰船科学技术》2015,(9):46-50
通过对比分析不同的潜艇运动方程,得到适用于潜艇水下回转运动仿真的数学模型,采用分段计算方法对潜艇水下回转运动横向水动力进行建模仿真。分析了潜艇水下定常回转运动仿真参数的变化规律,结果与实艇操纵具有较好的一致性,从而证明了本文所用潜艇数学模型和建模仿真方法正确有效。同时,本文也为下一步研究潜艇水下回转运动非线性特征打下基础。  相似文献   

19.
潜艇的螺旋桨噪声与潜艇的航速、下潜深度以及螺旋桨的特征尺度密切相关,是潜艇水下的重要噪声源。为此,定性分析潜艇螺旋桨的噪声来源,进而对螺旋桨的空化噪声特性进行定量仿真分析和实验验证。在此基础上,结合战术背景和水文条件对潜艇攻击中的搜索目标、接敌占位和攻击后的撤离规避等环节提出了具体可行的潜艇小噪声操纵控制方案,得出的结论对于减少潜艇螺旋桨空化噪声、保持潜艇声隐蔽操纵方法的作战运用具有重要的参考价值和指导意义。  相似文献   

20.
潜艇水下动力抗沉技术研究   总被引:3,自引:2,他引:1  
潜艇水下动力抗沉技术是提高潜艇生命力的重要措施。阐述了国内外潜艇水下动力抗沉技术发展现状,重点探讨了高压气吹除技术的模型和肼吹除技术的原理,并且举例说明高压气吹除技术对潜艇水下动力抗沉具有良好的效果。最后与高压气吹除相比较,结论得出肼吹除技术也具有很好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号