首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the dynamic simulation of vehicle straight line motion, a vehicle model usually drifts from its intended straight path even in the case of no external input. This is particularly true when a tire model based on experimental data is used. The purpose of this paper is to provide an enhancement of a basic understanding of a tire/vehicle system behavior in the straight line motion and to identify the effect of the tire on that motion. Through the analysis of a two degrees of freedom vehicle model, tire characteristic which causes a lateral drift in the straight line motion is identified. Then the results are confirmed from vehicle test and the simulations with a more complex full-car model.  相似文献   

2.
非线性闭环汽车系统直线行驶稳定性分析   总被引:3,自引:0,他引:3  
秦民  林逸  闵海涛  朱启昕 《汽车工程》2002,24(6):520-523,519
详细研究了驾驶员-汽车闭环系统直线行驶稳定性问题。在线性范围内分析了驾驶员预瞄时间和轮胎刚度对临界车速的影响;在非线性领域内运用Hopf定理等非线性理论研究了当系统失去直线行驶稳定性后的特殖运动形式,并以某一国产汽车为例,验证了该车失去直线行驶稳定性后,将出现稳定的蛇行运动。  相似文献   

3.
悬架K&C特性在底盘性能分析中的研究   总被引:1,自引:0,他引:1  
归纳出影响车辆转向特性的各种因素,并用悬架K&C参数定量化;提出车辆在常用车速直线行驶时期其前束角和外倾角应尽量为零,以保证轮胎磨损尽量小,并建立了行驶时前束角及外倾角的表达式;将各向力作用下的变形统一为悬架及轮胎刚度,并分析了各种刚度的意义;通过悬架K&C特性计算出动力学参数,建立了研究操纵稳定性及底盘电控的虚拟车辆,并在Carsim和ADAMS软件中实现.  相似文献   

4.
为了提高汽车在突发爆胎事故时的稳定性,对爆胎汽车主动制动控制策略进行了研究。根据车轮爆胎时间与压力变化的关系,在UniTire模型基础上建立了爆胎模型;根据电子稳定性控制系统中横摆角速度及质心侧偏角对汽车稳定性影响的关系,基于二自由度汽车动力学模型,通过计算汽车横摆角速度及质心侧偏角实际值与理想值的偏差,并基于线性二次型调节器最优控制方法决策出最优附加横摆力矩,从而修正爆胎后汽车的运动状态。最后通过计算机仿真对所提策略的有效性进行了验证。结果表明:主动制动控制策略可以保证爆胎过程中汽车的行驶稳定性和安全性。  相似文献   

5.
轮胎稳态模型的分析综述   总被引:2,自引:0,他引:2  
轮胎稳态模型描述了轮胎稳态运动过程的纵滑、侧偏特性,可以分为理论模型、经验模型和半经验模型.常用的理论模型包括线性模型、UA模型、Dugoff模型、刷子模型和LuGre模型;常用的经验模型包括多项式模型、Burckhardt模型、K-D模型和LC模型;常用的半经验模型包括魔术公式模型和UniTire模型.通过仿真分析,对各种模型描述轮胎运动状态的能力、复杂性、准确性和适用范围进行了比较和研究,对各种模型存在的局限性进行了分析,可为轮胎稳态特性分析和汽车控制系统设计选择轮胎模型提供依据.  相似文献   

6.
In this work, a full-state feedback controller is designed to prevent the oscillatory instability or snaking behaviour of an articulated steer vehicle. To design the controller, first, a linearized model of the vehicle is developed and analyzed to identify the most important uncertain tire parameters with regard to the snaking mode. By using this linearized model, the equations of motion are represented in the form of a polytopic system, which depends affinely on the most important uncertain tire parameters. Then, by solving some linear matrix inequalities, both the Lyapunov and state feedback matrices for the robust stabilization of the vehicle are found. The performance of the resulting controller is evaluated by conducting several simulations based on the linearized model. To verify the results from the linearized model analysis, some simulations are also done by a virtual prototype of the vehicle in ADAMS. The results based on the linearized model are reasonably consistent with those from the simulations in ADAMS. They show that the controller can effectively stabilize the vehicle during the snaking mode in different driving conditions.  相似文献   

7.
In this work, a full-state feedback controller is designed to prevent the oscillatory instability or snaking behaviour of an articulated steer vehicle. To design the controller, first, a linearized model of the vehicle is developed and analyzed to identify the most important uncertain tire parameters with regard to the snaking mode. By using this linearized model, the equations of motion are represented in the form of a polytopic system, which depends affinely on the most important uncertain tire parameters. Then, by solving some linear matrix inequalities, both the Lyapunov and state feedback matrices for the robust stabilization of the vehicle are found. The performance of the resulting controller is evaluated by conducting several simulations based on the linearized model. To verify the results from the linearized model analysis, some simulations are also done by a virtual prototype of the vehicle in ADAMS. The results based on the linearized model are reasonably consistent with those from the simulations in ADAMS. They show that the controller can effectively stabilize the vehicle during the snaking mode in different driving conditions.  相似文献   

8.
A planar suspension system (PSS) is a novel automobile suspension system in which an individual spring–damper strut is implemented in both the vertical and longitudinal directions, respectively. The wheels in a vehicle with such a suspension system can move back and forth relative to the chassis. When a PSS vehicle experiences asymmetric road excitations, the relative longitudinal motion of wheels with respect to the chassis in two sides of the same axle are not identical, and thus the two wheels at one axle will not be aligned in the same axis. The total dynamic responses, including those of the bounce, pitch and the roll of the PSS vehicle, to the asymmetric road excitation may exhibit different characteristics from those of a conventional vehicle. This paper presents an investigation into the comprehensive dynamic behaviour of a vehicle with the PSS, in such a road condition, on both the straight and curved roads. The study was carried out using an 18 DOF full-car model incorporating a radial-spring tyre–ground contact model and a 2D tyre–ground dynamic friction model. Results demonstrate that the total dynamic behaviour of a PSS vehicle is generally comparable with that of the conventional vehicle, while PSS exhibits significant improvement in absorbing the impact forces along the longitudinal direction when compared to the conventional suspension system. The PSS vehicle is found to be more stable than the conventional vehicle in terms of the directional performance against the disturbance of the road potholes on a straight line manoeuvre, while exhibiting a very similar handling performance on a curved line.  相似文献   

9.
Summary This paper presents new methods for estimating the axle weight of a moving vehicle, using two piezoelectric sensors and adaptive-footprint tire model. It is more difficult to weigh vehicles in motion accurately than to weigh standing vehicles. The difficulties in weighing moving vehicles result from sensor limitations as well as dynamic loading effects induced by vehicle/pavement interactions. For example, two identical vehicles with the same weight will generate sensor signals that differ in the shape and the peak value, depending the tire pressure, vehicle speed, road roughness, and sensor characteristics. This paper develops a method that is much less sensitive to these variable factors in determining the axle weight of a moving vehicle. In the developed method, first the piezoelectric sensor signal is reconstructed using the inverse dynamics of a high-pass filter representing the piezoelectric sensor. Then, the reconstructed signal, is normalized, using the nominal road/tire contact length obtained using an adaptive-footprint tire model, and then integrated. Experiments are performed with 3 vehicles of known weight ranging from 1,400 kg to 28,040 kg. The developed method is compared to two other algorithms. Results show that the developed method is most consistent and accurate.  相似文献   

10.
Summary This paper presents new methods for estimating the axle weight of a moving vehicle, using two piezoelectric sensors and adaptive-footprint tire model. It is more difficult to weigh vehicles in motion accurately than to weigh standing vehicles. The difficulties in weighing moving vehicles result from sensor limitations as well as dynamic loading effects induced by vehicle/pavement interactions. For example, two identical vehicles with the same weight will generate sensor signals that differ in the shape and the peak value, depending the tire pressure, vehicle speed, road roughness, and sensor characteristics. This paper develops a method that is much less sensitive to these variable factors in determining the axle weight of a moving vehicle. In the developed method, first the piezoelectric sensor signal is reconstructed using the inverse dynamics of a high-pass filter representing the piezoelectric sensor. Then, the reconstructed signal, is normalized, using the nominal road/tire contact length obtained using an adaptive-footprint tire model, and then integrated. Experiments are performed with 3 vehicles of known weight ranging from 1,400 kg to 28,040 kg. The developed method is compared to two other algorithms. Results show that the developed method is most consistent and accurate.  相似文献   

11.
爆胎汽车整车运动分析及控制   总被引:7,自引:0,他引:7  
郭孔辉  黄江  宋晓琳 《汽车工程》2007,29(12):1041-1045,1109
通过轮胎试验得到GT175/60 R14轮胎在正常胎压及零胎压下的力学特性参数,以此为依据,运用CarS im软件对爆胎汽车进行整车动力学仿真,找出汽车偏航原因,分析驾驶员不同操作所引起的整车运动性能变化以及汽车稳定性控制系统对爆胎汽车的影响。仿真结果表明,稳定性控制系统对于减轻爆胎带来的后果具有积极的作用。  相似文献   

12.
文章利用MATLAB软件对汽车制动防抱死系统进行安全仿真研究,选取合适的分析对象,把ABS系统拆成整车模型、轮胎模型以及制动器模型,分别对各模型进行受力以及运动分析,建立数学模型。最终在Simulink环境中建立仿真模型,结合整车数据,验证分析了汽车有无ABS系统时的制动效果。结果显示,装有ABS制动防抱死的汽车制动效果更好。  相似文献   

13.
为了优化山区公路避险车道参数设计方案,基于离散元基本理论与方法,建立轮胎与避险车道集料颗粒流模型。利用自主研发的轮胎性能测试系统对货车轮胎垂直特性进行了室内台架试验研究,通过检测不同输入条件下的响应,标定了轮胎颗粒流模型细观参数。采用漏斗法测量了避险车道集料休止角,结合离散元颗粒流仿真方法,对集料颗粒流模型表面摩擦因数进行了标定。基于所建立的轮胎与避险车道的集料颗粒流模型,仿真分析了轮胎在避险车道中的行驶过程,模拟了车辆在运行过程中的行驶距离、行驶速度与轮胎转速的变化趋势。在甘肃S308省道K209+400处避险车道进行了实车道路试验,试验结果验证了该仿真方法的正确性。通过所建立的轮胎-颗粒流模型对比分析了不同铺设厚度,不同集料大小下的仿真结果。综合考虑减速效果和施工成本,确立了避险车道铺设厚度、铺设长度、颗粒材料等设计技术参数。研究结果表明:离散元法能够很好地模拟车辆在避险车道中的行驶过程;考虑到颗粒固结等因素,建议避险车道铺设厚度不小于0.8 m;针对行驶速度大于90 km·h-1的载货汽车,避险车道设计长度建议大于130 m;避险车道集料方面,建议选用粒径为1~3 cm且圆度较高的砾石作为路床材料。  相似文献   

14.
基于扩展卡尔曼滤波的汽车质心侧偏角估计   总被引:4,自引:0,他引:4  
基于二自由度汽车动力学模型和轮胎模型,运用扩展卡尔曼滤波方法建立了汽车质心侧偏角估计器.利用汽车动力学仿真平台,通过仿真对比了线性轮胎模型和非线性轮胎模型的质心侧偏角估计结果.仿真结果表明,轮胎模型对于质心侧偏角估计精度至关重要,而采用非线性轮胎模型能显著提高质心侧偏角估计精度,估计结果能满足ESC控制的要求.  相似文献   

15.
This paper presents a method for estimating the vehicle side slip angle, which is considered as a significant signal in determining the vehicle stability region in vehicle stability control systems. The proposed method combines the model-based method and kinematics-based method. Side forces of the front and rear axles are provided as a weighted sum of directly calculated values from a lateral acceleration sensor and a yaw rate sensor and from a tire model according to the nonlinear factor, which is defined to identify the degree of nonlinearity of the vehicle state. Then, the side forces are fed to the extended Kalman filter, which is designed based on the single-track vehicle model associated with a tire model. The cornering stiffness identifier is introduced to compensate for tire force nonlinearities. A fuzzy-logic procedure is implemented to determine the nonlinear factor from the input variables: yaw rate deviation from the reference value and lateral acceleration. The proposed observer is compared with a model-based method and kinematics-based method. An 8 DOF vehicle model and Dugoff tire model are employed to simulate the vehicle state in MATLAB/SIMULINK. The simulation results shows that the proposed method is more accurate than the model-based method and kinematics-based method when the vehicle is subjected to severe maneuvers under different road conditions.  相似文献   

16.
A methodology is presented for estimating vehicle handling dynamics, which are important to control system design and safety measures. The methodology, which is based on an extended Kalman filter (EKF), makes it possible to estimate lateral vehicle states and tire forces on the basis of the results obtained from sinusoidal steering stroke tests that are widely used in the evaluation of vehicle and tire handling performances. This paper investigates the effect of vehicle-road system models on the estimation of lateral vehicle dynamics in the EKF. Various vehicle-road system models are considered in this study: vehicle models (2-DOF, 3-DOF, 4-DOF), tire models (linear, non-linear) and relaxation lengths. Handling tests are performed with a vehicle equipped with sensors that are widely used by vehicle and tire manufacturers for handling maneuvers. The test data are then used in the estimation of the EKF and identification of lateral tire model coefficients. The accuracy of the identified values is validated by comparing the RMS error between experimentally measured states and regenerated states simulated using the identified coefficients. The results show that the relaxation length of the tire model has a notable impact on the estimation of lateral vehicle dynamics.  相似文献   

17.
This paper presents a novel nonlinear dynamic model of a multi-axle steering vehicle to estimate the lateral wear amount of tires. Firstly, a 3DOF nonlinear vehicle dynamic model is developed, including dynamic models of the hydropneumatic suspension, tire, steering system and toe angle. The tire lateral wear model is then built and integrated into the developed vehicle model. Based on the comparison of experimental and simulation results, the nonlinear model is proved to be better than a linear model for the tire wear calculation. In addition, the effects of different initial toe angles on tire wear are analyzed. As simulation results shown, the impact of the dynamic toe angle on the tire wear is significant. The tire wear amount will be much larger than that caused by normal wear if the initial toe angle increases to 1° - 1.5°. The results also suggest that the proposed nonlinear model is of great importance in the design and optimazation of vehicle parameters in order to reduce the tire wear.  相似文献   

18.
A newly developed tire model for the Overturning Moment (OTM) characteristics and the analysis of the influence of OTM on vehicle rollover behavior are presented. The new OTM model was developed based on the so-called Magic Formula tire model. The concept of the new model involves identifying the difference between the simple model and the measurements to the newly defined functions. It was seen that the new model agrees very well with the measured data over a wide range of tire vertical loads, slip angles and camber angles. The influence of tire OTM on the vehicle rollover behavior was also investigated by using a full vehicle simulation in which a rather large steering angle was input. The results obtained from the vehicle simulation with three different tire models (model without OTM, simple model and new model) were compared with the experimental results. It was found that the calculated result obtained with the new OTM model agreed best with the experiment.  相似文献   

19.
A newly developed tire model for the Overturning Moment (OTM) characteristics and the analysis of the influence of OTM on vehicle rollover behavior are presented. The new OTM model was developed based on the so-called Magic Formula tire model. The concept of the new model involves identifying the difference between the simple model and the measurements to the newly defined functions. It was seen that the new model agrees very well with the measured data over a wide range of tire vertical loads, slip angles and camber angles. The influence of tire OTM on the vehicle rollover behavior was also investigated by using a full vehicle simulation in which a rather large steering angle was input. The results obtained from the vehicle simulation with three different tire models (model without OTM, simple model and new model) were compared with the experimental results. It was found that the calculated result obtained with the new OTM model agreed best with the experiment.  相似文献   

20.
Numerical design of vehicles having optimal straight line stability on undulating road surfaces requires an accurate vehicle model based on knowledge of the relevant phenomena. Therefore, vehicle behavior on undulating straight roads has been analyzed and modeled. Measurements on a flat road surface have shown that the dedicated vehicle model yields accurate simulation results of the steering response to medium steering wheel angle inputs. In addition, the model has been validated by measuring two vehicle responses during normal driving on an undulating straight road: viz. the responses to the small steering wheel angle input and to the input by the global inclination of the road surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号