首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motor vehicle emission rate models for predicting oxides of nitrogen (NOx) emissions are insensitive to vehicle modes of operation such as cruise, acceleration, deceleration, and idle, because they are based on average trip speed. Research has shown that NOx emissions are sensitive to engine load; hence, load-based variables need to be included in emissions models. Ongoing studies attempting to incorporate these `modal' variables have experienced difficulties with: (1) incomplete and/or non-representative data sets of emissions test data vis-a-vis the modal operating profiles of the tested vehicles; (2) lack of information for predicting on-road operating parameters of vehicles; and (3) non-representative vehicles recruited for emissions tests.The objective of this research was to develop a statistical model for predicting NOx emissions from light-duty gasoline motor vehicles. The primary end use of this model is forecasting, rather than explanation of the factors that affect NOx emissions, which brings to bear different requirements from the statistical model. The three challenges noted above are addressed by: (1) analyzing a data set of more than 13 000 hot-stabilized laboratory treadmill tests on 19 driving cycles (specific speed versus time testing conditions), and 114 variables describing vehicle, engine and test cycle characteristics; (2) making the models compatible with empirical data on how vehicles are being operated in-use; and (3) developing statistical weights to account for the differences in model year distributions between the emissions testing database and the current national on-road fleets.The NOx emissions model is estimated using ordinary least-squares regression techniques, with transformed response variable and regression weights. Tree regression is employed as a tool for mining relationships among variables in the data, with particular focus on identifying useful interactions among discrete variables. Details of the model development process are presented, as well as results for the final model showing the predicted emissions algorithm for the current motor vehicle fleet in Atlanta, GA metropolitan region.  相似文献   

2.
This study presents the characteristics of real world, real time, on-road vehicular exhaust emission namely, carbon monoxide (CO), nitric oxide (NO), hydrocarbons (HC), and carbon dioxide (CO2) emitted under heterogeneous traffic conditions. Field experiments were performed on major category of vehicles in developing countries, i.e. two-wheelers, auto-rickshaws, cars and buses. The on-board monitoring was carried out on different corridors with varying road geometry. Results revealed that the driving cycle was dependent on the road geometry, with two lane mixed flow corridor having lot of short term events compared to that of arterial road. Vehicular emissions during idling and cruising were generally low compared to emissions during acceleration. It was also found that emissions were significantly dependent on short term events such as rapid acceleration and braking during a trip. Also, the standard emission models like COPERT and CMEM under predicted the real world emissions by 30–200% depending upon different driving modes. The on-road emissions measurements were able to capture the emission characteristics during the micro events of real world driving scenarios which were not represented by standard vehicle emission measured at laboratory conditions.  相似文献   

3.
Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned, and tons of toxic pollutants released to the atmosphere each year by idling engines. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with communication and computing devices. In this paper, we first presented an integrated simulator with V2I, a car-following model and an emission model to simulate the behavior of vehicles at signalized intersections and calculate travel delays in queues, vehicle emissions, and fuel consumption. We then present a hierarchical green driving strategy based on feedback control to smooth stop-and-go traffic in signalized networks, where signals can disseminate traffic signal information and loop detector data to connected vehicles through V2I communications. In this strategy, the control variable is an individual advisory speed limit for each equipped vehicle, which is calculated from its location, signal settings, and traffic conditions. Finally, we quantify the mobility and environment improvements of the green driving strategy with respect to market penetration rates of equipped vehicles, traffic conditions, communication characteristics, location accuracy, and the car-following model itself, both in isolated and non-isolated intersections. In particular, we demonstrate savings of around 15% in travel delays and around 8% in fuel consumption and greenhouse gas emissions. Different from many existing ecodriving strategies in signalized road networks, where vehicles’ speed profiles are totally controlled, our strategy is hierarchical, since only the speed limit is provided, and vehicles still have to follow their leaders. Such a strategy is crucial for maintaining safety with mixed vehicles.  相似文献   

4.
Urban air quality is generally poor at traffic intersections due to variations in vehicles’ speeds as they approach and leave. This paper examines the effect of traffic, vehicle and road characteristics on vehicular emissions with a view to understand a link between emissions and the most likely influencing and measurable characteristics. It demonstrates the relationships of traffic, vehicle and intersection characteristics with vehicular exhaust emissions and reviews the traffic flow and emission models. Most studies have found that vehicular exhaust emissions near traffic intersections are largely dependent on fleet speed, deceleration speed, queuing time in idle mode with a red signal time, acceleration speed, queue length, traffic-flow rate and ambient conditions. The vehicular composition also affects emissions. These parameters can be quantified and incorporated into the emission models. There is no validated methodology to quantify some non-measurable parameters such as driving behaviour, pedestrian activity, and road conditions  相似文献   

5.
This study addresses the impacts of automated cars on traffic flow at signalized intersections. We develop and subsequently employ a deterministic simulation model of the kinematics of automated cars at a signalized intersection approach, when proceeding forward from a stationary queue at the beginning of a signal phase. In the discrete-time simulation, each vehicle pursues an operational strategy that is consistent with the ‘Assured Clear Distance Ahead’ criterion: each vehicle limits its speed and spacing from the vehicle ahead of it by its objective of not striking it, regardless of whether or not the future behavior of the vehicle ahead is cooperative. The simulation incorporates a set of assumptions regarding the values of operational parameters that will govern automated cars’ kinematics in the immediate future, which are sourced from the relevant literature.We report several findings of note. First, under a set of assumed ‘central’ (i.e. most plausible) parameter values, the time requirement to process a standing queue of ten vehicles is decreased by 25% relative to human driven vehicles. Second, it was found that the standard queue discharge model for human–driven cars does not directly transfer to queue discharge of automated vehicles. Third, a wet roadway surface may result in an increase in capacity at signalized intersections. Fourth, a specific form of vehicle-to-vehicle (V2V) communications that allows all automated vehicles in the stationary queue to begin moving simultaneously at the beginning of a signal phase provides relatively minor increases in capacity in this analysis. Fifth, in recognition of uncertainty regarding the value of each operational parameter, we identify (via scenario analysis, calculation of arc elasticities, and Monte-Carlo methods) the relative sensitivity of overall traffic flow efficiency to the value of each operational parameter.This study comprises an incremental step towards the broader objective of adapting standard techniques for analyzing traffic operations to account for the capabilities of automated vehicles.  相似文献   

6.
近年来随着小汽车保有量的不断增多,机动车尾气成为碳排放的主要组成部分。文中以信号灯控制交叉口运行的小汽车为研究对象,通过研究小汽车在交叉口减速、怠速、加速三种工况下车辆的排放特性,将信号灯交叉口小汽车温室气体排放量量化。本文以台州市市府大道-中心大道交叉口为例,通过实地调查该交叉口当前平峰期和高峰期信号灯配时特性、交通运行特性等实际参数,对二氧化碳排放量进行测算,最终得出该交叉口在平峰期和高峰期的二氧化碳小时排放量,为后续该交叉口采取优化策略后在碳排放指标方面的量化效果提供参考依据,同时为台州市信号灯交叉口碳排放量测算提供参考方法。  相似文献   

7.
This paper assess whether a real-world second-by-second methodology that integrates vehicle activity and emissions rates for light-duty gasoline vehicles can be extended to diesel vehicles. Secondly it compares fuel use and emission rates between gasoline and diesel light-duty vehicles. To evaluate the methodology, real-world field data from two light-duty diesel vehicles are used. Vehicle specific power, a function of vehicle speed, acceleration, and road grade, is evaluated with respect to ability to explain variation in emissions rates. Vehicle specific power has been used previously to define activity-based modes and to quantify variation in fuel use and emission rates of gasoline vehicles taking into account idle, acceleration, cruise, and deceleration. The fuel use and emission rates for light-duty diesel vehicles can also be explained using vehicle specific power -based modes. Thus, the methodology enables direct comparisons for different vehicle fuels and technologies. Furthermore, the method can be used to estimate average fuel use and emission rates for a wide variety of driving cycles.  相似文献   

8.
The health cost of on-road air pollution exposure is a component of traffic marginal costs that has not previously been assessed. The main objective of this paper is to introduce on-road pollution exposure as an externality of traffic, particularly important during traffic congestion when on-road pollution exposure is highest. Marginal private and external cost equations are developed that include on-road pollution exposure in addition to time, fuel, and pollution emissions components. The marginal external cost of on-road exposure includes terms for the marginal vehicle’s emissions, the increased emissions from all vehicles caused by additional congestion from the marginal vehicle, and the additional exposure duration for all travelers caused by additional congestion from the marginal vehicle. A sensitivity analysis shows that on-road pollution exposure can be a large portion (18%) of marginal social costs of traffic flow near freeway capacity, ranging from 4% to 38% with different exposure parameters. In an optimal pricing scenario, excluding the on-road exposure externality can lead to 6% residual welfare loss because of sub-optimal tolls. While regional pollution generates greater costs in uncongested conditions, on-road exposure comes to dominate health costs on congested freeways because of increased duration and intensity of exposure. The estimated marginal cost and benefit curves indicate a theoretical preference for price controls to address the externality problem. The inclusion of on-road exposure costs reduces the magnitudes of projects required to cover implementation costs for intelligent transportation system (ITS) improvements; the net benefits of road-pricing ITS systems are increased more than the net benefits of ITS traffic flow improvements. When considering distinct vehicle classes, inclusion of on-road exposure costs greatly increases heavy-duty vehicle marginal costs because of their higher emissions rates and greater roadway capacity utilization. Lastly, there are large uncertainties associated with the parameters utilized in the estimation of health outcomes that are a function of travel pollution intensity and duration. More research is needed to develop on-road exposure modeling tools that link repeated short-duration exposure and health outcomes.  相似文献   

9.
我国公路运输温室气体排放清单研究   总被引:3,自引:0,他引:3  
本文结合国际形势和国内外研究成果,研究提出我国公路运输温室气体排放清单编制范围、评估对象、编制原则、清单建立方法、排放因子和活动水平确定方法,以及清单编制的技术路线。其中提出公路运输温室气体排放清单建立的三种方法,分别是基于燃料消耗的量化方法、基于车辆的量化方法和基于交通流的量化方法,并采用上述方法结合我国公路运输发展现状和相关研究成果,编制了包含私人交通在内的2008年我国全社会公路运输温室气体排放清单,并结合理论研究和案例分析,提出我国编制公路运输温室气体排放清单的问题与建议。  相似文献   

10.
The primary objective of the study was to evaluate the impacts of an unconventional left-turn treatment called contraflow left-turn lane (CLL) on the operational performance of left-turn movement at signalized intersections. An analytical model was developed for estimating the capacity of left-turn movement at signalized intersections with the CLL design. The capacity model was calibrated and validated using field data collected at six approaches at five signalized intersections in the city of Handan, China. The results of field data analyses showed that the use of CLL design improved the capacity of left-turn movements. However, the capacity gains with the CLL design were quite stochastic considering the randomness in the arrivals of left-turning vehicles. Analytical delay models were proposed for estimating the delay to left-turning vehicles at intersections with the CLL design. A procedure was also proposed for optimizing the location of the upstream median opening and the green interval of the pre-signal. Simulation analyses were conducted to compare the delay experienced by the left-turning and through vehicles at signalized intersections with the conventional left-turn lane, the CLL and another unconventional left-turn treatment entitled “tandem design”. The results showed that both CLL and tandem designs outperformed conventional left-turn lane design; and the CLL design generated less delay to both the left-turning and through vehicles as compared with the tandem design.  相似文献   

11.
The need to increase measurement accuracy of fuel consumption and pollutant emissions in vehicles is forcing the market to develop chassis-dyno test cells that reproduce on-road conditions realistically.Air-cooling is key to vehicle performance. It is therefore critical that the design of a test cell guarantees realistic cooling of all vehicle components, as important errors in fuel consumption and emissions measurements may otherwise arise. In a test-room, a blower placed in front of the vehicle supplies the cooling air. While there are some guidelines in the literature for the selection of fans required for emissions measurements for standard driving cycles, the information for designing the air supply system for specific tests in other areas is scarce.New Real Driving Emissions (RDE) legislation will force manufacturers to perform on-road measurements of pollutants. This represents a significant challenge due to the variability of conditions coming from non-controlled parameters. In order to optimize vehicles, different tests are performed in cells equipped with a chassis-dyno where the on-road flow field around the vehicle is reproduced as closely as possible.This work provides some guidelines for the definition of the airflow supply system of chassis-dyno facilities for vehicle optimization tests, based on a CFD analysis of the flow characteristics around the vehicle. By comparison with the solution obtained for a vehicle in real road driving conditions, the exit section of the blower and the distance between the blower exit and the car that best reproduce realistic on-road flow conditions in a test room are determined.  相似文献   

12.
The average delay experienced by vehicles at a signalized intersection defines the level of service (LOS) at which the intersection operates. A major challenge in this regard is the ability to accurately estimate all the components underlying the overall control delay, including the uniform, incremental and initial queue delays. This paper tackles this challenging task by proposing a novel exact model of the uniform control delay component with a view to enhancing the accuracy of the existing approximate models, notably, the one reported in the Highway Capacity Manual 2010. Both graphical and analytical proofs are employed to derive exact closed‐form expressions for the uniform control delay at undersaturated signalized intersections. The high degree of accuracy of the proposed models is analysed through extensive simulations to demonstrate their abilities to exactly characterize the performance of real‐life intersections in terms of the resulting vehicle delay. Unlike the existing widely adopted uniform delay models, which tend to overestimate the LOS of real‐life intersections, the delay models introduced in this paper have the merit of exactly capturing such a LOS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents the development and assessment of models to estimate pedestrian demand based on the level of pedestrian activity (high and low). As activity varies by the time of the day, temporal variations were evaluated by considering different time periods. Data collected at 128 low and 48 high pedestrian activity signalized intersections (a total of 176 signalized intersections) in the City of Charlotte, North Carolina were used to develop and assess the models using stepwise regression analysis through backward elimination of independent variables (includes demographic, land use, and network characteristics). The use of different buffer widths (proximal area) to extract these characteristics was also evaluated. Results, in general, show that pedestrian demand varied by the level of activity, explanatory variables extracted by buffer width, and time of the day. The estimates from the models could be used in transportation planning (identify required pedestrian facilities, resource allocation), safety, and operational analyses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Vehicle discharge headway at signalized intersections is of great importance in junction analysis. However, it is very difficult to simulate the discharge headway of individual queued vehicle because of the great variations in the driver behaviors, vehicle characteristics and traffic environment. The current study proposes a neural network (NN) approach to simulate the queued vehicle discharge headway. A computer-based three-layered (NN) model was developed for the estimation of discharge headway. The widely used backpropagation algorithm has been utilized in training the NN model. The NN model was trained, validated with field data and then compared with other headway models. It was found that the NN model performed better. Model sensitivity analysis was conducted to further validate the applicability of the model. Results showed that the NN model could produce reasonable discharge headway estimates for individual vehicles.  相似文献   

15.
An adaptive control model of a network of signalized intersections is proposed based on a discrete-time, stationary, Markov decision process. The model incorporates probabilistic forecasts of individual vehicle actuations at downstream inductance loop detectors that are derived from a macroscopic link transfer function. The model is tested both on a typical isolated traffic intersection and a simple network comprised of five four-legged signalized intersections, and compared to full-actuated control. Analyses of simulation results using this approach show significant improvement over traditional full-actuated control, especially for the case of high volume, but not saturated, traffic demand.  相似文献   

16.
Discrepancies between real-world use of vehicles and certification cycles are a known issue. This paper presents an analysis of vehicle fuel consumption and pollutant emissions of the European certification cycle (NEDC) and the proposed worldwide harmonized light vehicles test procedure (WLTP) Class 3 cycle using data collected on-road. Sixteen light duty vehicles equipped with different propulsion technologies (spark-ignition engine, compression-ignition engine, parallel hybrid and full hybrid) were monitored using a portable emission measurement system under real-world driving conditions. The on-road data obtained, combined with the Vehicle Specific Power (VSP) methodology, was used to recreate the dynamic conditions of the NEDC and WLTP Class 3 cycle. Individual vehicle certification values of fuel consumption, CO2, HC and NOx emissions were compared with test cycle estimates based on road measurements. The fuel consumption calculated from on-road data is, on average, 23.9% and 16.3% higher than certification values for the recreated NEDC and WLTP Class 3 cycle, respectively. Estimated HC emissions are lower in gasoline and hybrid vehicles than certification values. Diesel vehicles present higher estimated NOx emissions compared to current certification values (322% and 326% higher for NOx and 244% and 247% higher for HC + NOx for NEDC and WLTP Class 3 cycle, respectively).  相似文献   

17.
Highway emissions represent a major source of many pollutants. Use of local data to model these emissions can have a large impact on the magnitude and distribution of emissions predicted and can significantly improve the accuracy of local scale air quality modeling assessments. This paper provides a comparison of top–down and bottom–up approaches for developing emission inventories for modeling in one urban area, Philadelphia, in calendar year 1999. A bottom–up approach relies on combining motor vehicle emission factors and vehicle activity data from a travel demand model estimated at the road link level to generate hourly emissions data. This approach can result in better estimates of levels and spatial distribution of on-road motor vehicle emissions than a top–down approach that relies on more aggregated information and default modeling inputs.  相似文献   

18.
For the purposes of both traffic-light control and the design of roadway layouts, it is important to understand pedestrian street-crossing behavior because it is not only crucial for improving pedestrian safety but also helps to optimize vehicle flow. This paper explores the mechanism of pedestrian street crossings during the red-man phase of traffic light signals and proposes a model for pedestrians’ waiting times at signalized intersections. We start from a simplified scenario for a particular pedestrian under specific traffic conditions. Then we take into account the interaction between vehicles and pedestrians via statistical unconditioning. We show that this in general leads to a U-shaped distribution of the pedestrians’ intended waiting time. This U-shaped distribution characterizes the nature of pedestrian street-crossing behavior, showing that in general there are a large proportion of pedestrians who cross the street immediately after arriving at the crossing point, and a large proportion of pedestrians who are willing to wait for the entire red-man phase. The U-shaped distribution is shown to reduce to a J-shaped or L-shaped distribution for certain traffic scenarios. The proposed statistical model was applied to analyze real field data.  相似文献   

19.
Road traffic noise models are fundamental tools for designing and implementing appropriate prevention plans to minimize and control noise levels in urban areas. The objective of this study is to develop a traffic noise model to simulate the average equivalent sound pressure level at road intersections based on traffic flow and site characteristics, in the city of Cartagena de Indias (Cartagena), Colombia. Motorcycles are included as an additional vehicle category since they represent more than 30% of the total traffic flow and a distinctive source of noise that needs to be characterized. Noise measurements are collected using a sound level meter Type II. The data analysis leads to the development of noise maps and a general mathematical model for the city of Cartagena, Colombia, which correlates the sound levels as a function of vehicle flow within road intersections. The highest noise levels were 79.7 dB(A) for the road intersection María Auxiliadora during the week (business days) and 77.7 dB(A) for the road intersection India Catalina during weekends (non-business days). Although traffic and noise are naturally related, the intersections with higher vehicle flow did not have the highest noise levels. The roadway noise for these intersections in the city of Cartagena exceeds current limit standards. The roadway noise model is able to satisfactorily predict noise emissions for road intersections in the city of Cartagena, Colombia.  相似文献   

20.
Few studies have quantified relationships between bicyclist exposure to air pollution and roadway and traffic variables. As a result, transportation professionals are unable to easily estimate exposure differences among bicycle routes for network planning, design, and analysis. This paper estimates the effects of roadway and travel characteristics on bicyclist exposure concentrations, controlling for meteorology and background conditions. Concentrations of volatile organic compounds (VOC) and carbon monoxide (CO) are modeled using high-resolution data collected on-road. Results indicate that average daily traffic (ADT) provides a parsimonious way to characterize the impact of roadway characteristics on bicyclists’ exposure. VOC and CO exposure increase by approximately 2% per 1000 ADT, robust to different regression model specifications. Exposure on off-street facilities is higher than at a park, but lower than on-street riding – with the exception of a path through an industrial corridor with significantly higher exposure. VOC exposure is 20% higher near intersections. Traffic, roadway, and travel variables have more explanatory power in the VOC models than the CO model. The quantifications in this paper enable calculation of expected exposure differences among travel paths for planning and routing applications. The findings also have policy and design implications to reduce bicyclists’ exposure. Separation between bicyclists and motor vehicle traffic is a necessary but not sufficient condition to reduce exposure concentrations; off-street paths are not always low-exposure facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号