首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduction of greenhouse gas emission and fuel consumption as one of the main goals of automotive industry leading to the development hybrid vehicles. The objective of this paper is to investigate the energy management system and control strategies effect on fuel consumption, air pollution and performance of hybrid vehicles in various driving cycles. In order to simulate the hybrid vehicle, the combined feedback–feedforward architecture of the power-split hybrid electric vehicle based on Toyota Prius configuration is modeled, together with necessary dynamic features of subsystem or components in ADVISOR. Multi input fuzzy logic controller developed for energy management controller to improve the fuel economy of a power-split hybrid electric vehicle with contrast to conventional Toyota Prius Hybrid rule-based controller. Then, effects of battery’s initial state of charge, driving cycles and road grade investigated on hybrid vehicle performance to evaluate fuel consumption and pollution emissions. The simulation results represent the effectiveness and applicability of the proposed control strategy. Also, results indicate that proposed controller is reduced fuel consumption in real and modal driving cycles about 21% and 6% respectively.  相似文献   

2.
This paper is the second of a two part study which quantifies the economic and greenhouse performance of conventional, hybrid and fully electric passenger vehicles operating in Australian driving conditions. This second study focuses on the life cycle greenhouse gas emissions. Two vehicle sizes are considered, Class-B and Class-E, which bracket the large majority of passenger vehicles on Australian roads.Using vehicle simulation models developed in the first study, the trade-offs between the ability of increasingly electric powertrains in curtailing the tailpipe emissions and the corresponding rise in the embedded vehicle emissions have been evaluated. The sensitivity of the life cycle emissions to fuel, electricity and the change in the energy mix are all considered. In conjunction with the total cost of ownership calculated in the companion paper, this allows the cost of mitigating life cycle greenhouse gas emissions through electrification of passenger transport to be estimated under different scenarios. For Class-B vehicles, fully electric vehicles were found to have a higher total cost of ownership and higher life cycle emissions than an equivalent vehicle with an internal combustion engine. For Class-E vehicles, hybrids are found to be the most cost effective whilst also having lowest life cycle emissions under current conditions. Further, hybrid vehicles also exhibit little sensitivity in terms of greenhouse emissions and cost with large changes in system inputs.  相似文献   

3.
The impact of global warming and climate change is the most critical challenge of the 21st century. The greenhouse effect caused by technological development and industrial pollution has accelerated the speed of global warming. To effectively reduce global warming and encourage sustainable enterprise development, a comparative analysis approach is used to examine various domestic automotive products which utilize the up-to-date innovative technology. Their contributions to fuel consumption and emissions of the greenhouse gas, carbon dioxide (CO2), are then investigated. This study focuses on technical innovation in a conventional engine and output power. The results indicate that innovative engines (such as the Ford turbo petrol/diesel engine, the EcoBoost/TDCi) have improved energy consumption and CO2 emissions. In addition, an improvement in output power (such as Toyota hybrid vehicles) has also improved energy consumption and CO2 emissions.  相似文献   

4.
Transportation sector accounts for a large proportion of global greenhouse gas and toxic pollutant emissions. Even though alternative fuel vehicles such as all-electric vehicles will be the best solution in the future, mitigating emissions by existing gasoline vehicles is an alternative countermeasure in the near term. The aim of this study is to predict the vehicle CO2 emission per kilometer and determine an eco-friendly path that results in minimum CO2 emissions while satisfying travel time budget. The vehicle CO2 emission model is derived based on the theory of vehicle dynamics. Particularly, the difficult-to-measure variables are substituted by parameters to be estimated. The model parameters can be estimated by using the current probe vehicle systems. An eco-routing approach combining the weighting method and k-shortest path algorithm is developed to find the optimal path along the Pareto frontier. The vehicle CO2 emission model and eco-routing approach are validated in a large-scale transportation network in Toyota city, Japan. The relative importance analysis indicates that the average speed has the largest impact on vehicle CO2 emission. Specifically, the benefit trade-off between CO2 emission reduction and the travel time buffer is discussed by carrying out sensitivity analysis in a network-wide scale. It is found that the average reduction in CO2 emissions achieved by the eco-friendly path reaches a maximum of around 11% when the travel time buffer is set to around 10%.  相似文献   

5.
The drive to reduce fuel consumption and greenhouse gas emissions is one shared by both businesses and governments. Although many businesses in the European Union undertake interventions, such as driver training, there is relatively little research which has tested the efficacy of this approach and that which does exist has methodological limitations. One emerging technology employed to deliver eco-driving training is driver training using a simulator. The present study investigated whether bus drivers trained in eco-driving techniques were able to implement this learning in a simulator and whether this training would also transfer into the workplace. A total of 29 bus drivers attended an all-day eco-driving course and their driving was tested using a simulator both before and after the course. A further 18 bus drivers comprised the control group, and they attended first aid courses as well as completing the same simulator drives (before-after training). The bus drivers who were given the eco-driving training significantly improved fuel economy figures in the simulator, while there was no change in fuel economy for the control group. Actual fuel economy figures were also provided by the bus companies immediately before the training, immediately after the training and six months after the training. As expected there were no significant changes in fuel economy for the control group. However, fuel economy for the treatment group improved significantly immediately after the eco-driving training (11.6%) and this improvement was even larger six months after the training (16.9%). This study shows that simulator-based training in eco-driving techniques has the potential to significantly reduce fuel consumption and greenhouse gas emissions in the road transport sector.  相似文献   

6.
Buses are the main transit mode in Brazil, transporting more than 55 million passengers per day. Most of these vehicles run on diesel oil causing a dependence on oil, extensive greenhouse gas emissions and increasing air pollution in urban areas. In order to improve this situation, options for Brazilian cities include the use of alternative fuels and new propulsion technologies, such as hybrid vehicles. This paper proposes a procedure for evaluating the performance of a recently developed hybrid‐drive technology. A simple procedure is presented to compare hybrid‐drive buses with conventional diesel buses in urban operations, particularly with respect to fuel economy. Next the potential for reducing diesel oil consumption through the use of hybrid‐drive buses is assessed. Field tests carried out by the authors indicate that fuel consumption improvement through the use of hybrid‐drive buses would certainly exceed 20%, resulting in lower fuel costs and carbon dioxide (CO2) emissions.  相似文献   

7.
Transporting more than 55 million passengers per day, buses are the main transit mode in Brazil. Most of these vehicles use diesel oil and this situation causes dependence on oil, extensive greenhouse gas emissions and increasing air pollution in urban areas. In order to improve this situation the options for Brazilian cities include the use of alternative fuels and new propulsion technologies, such as hybrid vehicles. This article proposes a procedure for evaluating the performance of a recently developed Brazilian hybrid-drive technology. A simple procedure is presented to compare hybrid-drive buses with conventional diesel buses in urban operation focusing on fuel economy and the potential for reducing diesel oil consumption through the use of hybrid-drive buses. Field tests carried out by the authors indicate that fuel consumption improvement through the use of hybrid-drive buses would certainly exceed 20%, resulting in lower fuel costs and reduced carbon dioxide (CO2) emissions.  相似文献   

8.
The ’MOT’ vehicle inspection test record dataset recently released by the UK Department for Transport (DfT) provides the ability to estimate annual mileage figures for every individual light duty vehicle greater than 3 years old within Great Britain. Vehicle age, engine size and fuel type are also provided in the dataset and these allow further estimates to be made of fuel consumption, energy use, and per vehicle emissions of both air pollutants and greenhouse gases. The use of this data permits the adoption of a new vehicle-centred approach to assessing emissions and energy use in comparison to previous road-flow and national fuel consumption based approaches. The dataset also allows a spatial attribution of each vehicle to a postcode area, through the reported location of relevant vehicle testing stations. Consequently, this new vehicle data can be linked with socio-demographic data in order to determine the potential characteristics of vehicle owners.This paper provides a broad overview of the types of analyses that are made possible by these data, with a particular focus on distance driven and pollutant emissions. The intention is to demonstrate the very broad potential for this data, and to highlight where more focused analysis could be useful. The findings from the work have important implications for understanding the distributional impacts of transport related policies and targeting messaging and interventions for the reduction of car use.  相似文献   

9.
In this work the trade-off between economic, therefore fuel saving, and ecologic, pollutant emission reducing, driving is discussed. The term eco-driving is often used to refer to a vehicle operation that minimizes energy consumption. However, for eco-driving to be environmentally friendly not only fuel consumption but also pollutant emissions should be considered. In contrast to previous studies, this paper will discuss the advantages of eco-driving with respect to improvements in fuel consumption as well as pollutant gas emissions. Simulating a conventional passenger vehicle and applying numerical trajectory optimization methods best vehicle operation for a given trip is identified. With hardware-in-the-loop testing on an engine test bench the fuel and emissions are measured. An approach to integrate pollutant emission and dynamically choose the ecologically optimal gear is proposed.  相似文献   

10.
Intercity passenger trips constitute a significant source of energy consumption, greenhouse gas emissions, and criteria pollutant emissions. The most commonly used city-to-city modes in the United States include aircraft, intercity bus, and automobile. This study applies state-of-the-practice models to assess life-cycle fuel consumption and pollutant emissions for intercity trips via aircraft, intercity bus, and automobile. The analyses compare the fuel and emissions impacts of different travel mode scenarios for intercity trips ranging from 200 to 1600 km. Because these modes operate differently with respect to engine technology, fuel type, and vehicle capacity, the modeling techniques and modeling boundaries vary significantly across modes. For aviation systems, much of the energy and emissions are associated with auxiliary equipment activities, infrastructure power supply, and terminal activities, in addition to the vehicle operations between origin/destination. Furthermore, one should not ignore the embodied energy and initial emissions from the manufacturing of the vehicles, and the construction of airports, bus stations, highways and parking lots. Passenger loading factors and travel distances also significantly influence fuel and emissions results on a per-traveler basis. The results show intercity bus is generally the most fuel-efficient mode and produced the lowest per-passenger-trip emissions for the entire range of trip distances examined. Aviation is not a fuel-efficient mode for short trips (<500 km), primarily due to the large energy impacts associated with takeoff and landing, and to some extent from the emissions of ground support equipment associated with any trip distance. However, aviation is more energy efficient and produces less emissions per-passenger-trip than low-occupancy automobiles for trip distances longer than 700–800 km. This study will help inform policy makers and transportation system operators about how differently each intercity system perform across all activities, and provides a basis for future policies designed to encourage mode shifts by range of service. The estimation procedures used in this study can serve as a reference for future analyses of transportation scenarios.  相似文献   

11.
The potential for improving the fuel economy of conventional, gasoline-powered automobiles through optimized application of recent technology advances is analyzed. Results are presented at three levels of technical certainty, ranging from technologies already in use to technologies facing technical constraints (such as emissions control problems) which might inhibit widespread use. A fleet-aggregate, engineering-economic analysis is used to estimate a range of U.S. new car fleet average fuel economy levels achievable given roughly 10 years of lead time. Technology cost estimates are compared to fuel savings in order to determine likely cost-effective levels of fuel economy, which are found to range from 39 miles per gallon to 51 miles per gallon depending on technology certainty level. The corresponding estimated increases in average new car price range from $540 to $790 (1993$). Estimated fuel savings payback times average less than 3 years and the cost of conserved energy averages $0.50 per gallon, indicating that these levels of fuel economy improvement are cost-effective over a vehicle lifetime. A vehicle stock turnover model is used to project the reductions in gasoline consumption and associated emissions that would follow if the estimated fuel economy levels are achieved. Potential trade-offs regarding vehicle performance, safety, and emissions are also discussed.  相似文献   

12.
The corporate average fuel economy (CAFE) standard is the major policy tool to improve the fleet average miles per gallon of automobile manufacturers in the US. The Alternative Motor Fuels Act (AMFA) provides special treatment in calculating the fuel economy of alternative-fuel vehicles to give manufacturers CAFE incentives to produce more alternative-fuel vehicles. AMFA has as its goals an increase in the production of alternative-fuel vehicles and a decrease in gasoline consumption and greenhouse gas emissions. This paper examines theoretically the effects of the program set up under AMFA. It finds that, under some conditions, this program may actually increase the production of fuel-inefficient gasoline vehicles, gasoline consumption and greenhouse gas emissions.  相似文献   

13.
By converting fixed insurance costs to per-mile charges, pay-as-you-drive-and-you-save (PAYDAYS) insurance would encourage voluntary reductions in driving with concomitant decreases in congestion, air pollution, greenhouse gas emissions, crashes, and insurance claims. Public policies have at time been deployed to require or reward environmental performance in the sale of transportation-related products in the marketplace. For example, the US National Highway Traffic Safety Administration has issued both proposed and final fuel economy rules intended to maximize net benefits through the use of marginal cost-benefit analysis. This paper explores how an analogous benefit-maximizing rule could be structured to encourage adoption of PAYDAYS insurance. The key to designing such a benefit-maximizing rule is to: estimate the net benefits of every mile not driven; estimate the reduction in mileage that would result from PAYDAYS insurance; and, apply these estimates to the calculation of net benefits of every PAYDAYS-insured mile. A mechanism by which the industry itself funds the incentive payments is described, as are alternatives.  相似文献   

14.
The Intergovernmental Panel on Climate Change estimates that greenhouse gas emissions (GHG) must be cut 40–70% by 2050 to prevent a greater than 2 °Celsius increase in the global mean temperature; a threshold that may avoid the most severe climate change impacts. Transportation accounts for about one third of GHG emissions in the United States; reducing these emissions should therefore be an important part of any strategy aimed at meeting the IPCC targets. Prior studies find that improvements in vehicle energy efficiency or decarbonization of the transportation fuel supply would be required for the transportation sector to achieve the IPCC targets. Strategies that could be implemented by regional transportation planning organizations are generally found to have only a modest GHG reduction potential. In this study we challenge these findings. We evaluate what it would take to achieve deep GHG emission reductions from transportation without advances in vehicle energy efficiency and fuel decarbonization beyond what is currently expected under existing regulations and market expectations. We find, based on modeling conducted in the Albuquerque, New Mexico metropolitan area that it is possible to achieve deep reductions that may be able to achieve the IPCC targets. Achieving deep reductions requires changes in transportation policy and land-use planning that go far beyond what is currently planned in Albuquerque and likely anywhere else in the United States.  相似文献   

15.
This paper investigates the well-to-wake energy consumption and greenhouse gas emissions of several key SOX abatement options in marine transportation, ranging from the manufacture of low sulfur fuels to equipping the vessel with suitable scrubber solutions. The findings suggest that a scrubber system, used with current heavy fuel oils, has the potential to reduce SOX emissions with lower well-to-wake energy consumption and greenhouse gas emissions than switching to production of low sulfur fuels at the refinery. A sensitivity analysis covering a series of system parameters shows that variations in the well-to-tank greenhouse gas emissions intensity and the energy efficiency of the main engine have the highest impacts in terms of well-to-wake emissions.  相似文献   

16.
This paper considers potential use of domestic transferable, or tradable, permit systems for the purposes of travel management, especially reducing environmental nuisances. The main arguments for and against the use of permits are analyzed. Secondly two case studies of existing permit systems are examined. The main conclusions are that tradable permits can address greenhouse gas and regional atmospheric pollutant emissions, and are suitable for congestion on a restricted time–space basis. Permits applied to mobile sources are technically feasible at acceptable financial cost for protecting sensitive geographical areas, and schemes applied to automakers for unitary vehicle emissions are also viable.  相似文献   

17.
Municipal fleet vehicle purchase decisions provide a direct opportunity for cities to reduce emissions of greenhouse gases (GHG) and air pollutants. However, cities typically lack comprehensive data on total life cycle impacts of various conventional and alternative fueled vehicles (AFV) considered for fleet purchase. The City of Houston, Texas, has been a leader in incorporating hybrid electric (HEV), plug-in hybrid electric (PHEV), and battery electric (BEV) vehicles into its fleet, but has yet to adopt any natural gas-powered light-duty vehicles. The City is considering additional AFV purchases but lacks systematic analysis of emissions and costs. Using City of Houston data, we calculate total fuel cycle GHG and air pollutant emissions of additional conventional gasoline vehicles, HEVs, PHEVs, BEVs, and compressed natural gas (CNG) vehicles to the City's fleet. Analyses are conducted with the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Levelized cost per kilometer is calculated for each vehicle option, incorporating initial purchase price minus residual value, plus fuel and maintenance costs. Results show that HEVs can achieve 36% lower GHG emissions with a levelized cost nearly equal to a conventional sedan. BEVs and PHEVs provide further emissions reductions, but at levelized costs 32% and 50% higher than HEVs, respectively. CNG sedans and trucks provide 11% emissions reductions, but at 25% and 63% higher levelized costs, respectively. While the results presented here are specific to conditions and vehicle options currently faced by one city, the methods deployed here are broadly applicable to informing fleet purchase decisions.  相似文献   

18.
Fuel-speed curves (FSC) are used to account for the aggregate effects of congestion on fuel consumption in transportation scenario analysis. This paper presents plausible FSC for conventional internal combustion engine (ICE) vehicles and for advanced vehicles such as hybrid electric vehicles, fully electric vehicles (EVs), and fuel cell vehicles (FCVs) using a fuel consumption model with transient driving schedules and a set of 145 hypothetical vehicles. The FSC shapes show that advanced power train vehicles are expected to maintain fuel economy (FE) in congestion better than ICE vehicles, and FE can even improve for EV and FCV in freeway congestion. In order to implement these FSC for long-range scenario modeling, a bounded approach is presented which uses a single congestion sensitivity parameter. The results in this paper will assist analysis of the roles that vehicle technology and congestion mitigation can play in reducing fuel consumption and greenhouse gas emissions from motor vehicles.  相似文献   

19.
The paper presents a life-cycle assessment of costs and greenhouse gas emissions for transit buses deploying a hybrid input-output model to compare ultra-low sulfur diesel to hybrid diesel-electric, compressed natural gas, and hydrogen fuel-cell. We estimate the costs of emissions reductions from alternative fuel vehicles over the life cycle and examine the sensitivity of the results to changes in fuel prices, passenger demand, and to technological characteristics influencing performance and emissions. We find that the alternative fuel buses reduce operating costs and emissions, but increase life-cycle costs. The infrastructure requirement to deploy and operate alternative fuel buses is critical in the comparison of life-cycle emissions. Additionally, efficient bus choice is sensitive to passenger demand, but only moderately sensitive to technological characteristics, and that the relative efficiency of compressed natural gas buses is more sensitive to changes in fuel prices than that of the other bus types.  相似文献   

20.
With increasing attention being paid to greenhouse gas (GHG) emissions, the transportation industry has become an important focus of approaches to reduce GHG emissions, especially carbon dioxide equivalent (CO2e) emissions. In this competitive industry, of course, any new emissions reduction technique must be economically attractive and contribute to good operational performance. In this paper, a continuous-variable feedback control algorithm called GEET (Greening via Energy and Emissions in Transportation) is developed; customer deliveries are assigned to a fleet of vehicles with the objective function of Just-in-Time (JIT) delivery and fuel performance metrics akin to the vehicle routing problem with soft time windows (VRPSTW). GEET simultaneously determines vehicle routing and sets cruising speeds that can be either fixed for the entire trip or varied dynamically based on anticipated performance. Dynamic models for controlling vehicle cruising speed and departure times are proposed, and the impact of cruising speed on JIT performance and fuel performance are evaluated. Allowing GEET to vary cruising speed is found to produce an average of 12.0–16.0% better performance in fuel cost, and −36.0% to +16.0% discrepancy in the overall transportation cost as compared to the Adaptive Large Neighborhood Search (ALNS) heuristic for a set of benchmark problems. GEET offers the advantage of extremely fast computational times, which is a substantial strength, especially in a dynamic transportation environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号