首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper presents a methodology of assigning traffic in a network with the consideration of air quality. Traffic assignment is formulated as an optimization problem considering travel cost and on-road emissions. It introduces a cell-based approach to model emission concentrations so that either the average or maximum emissions in a network can be considered in the optimization process. The emissions in a cell are modeled taking into consideration the influence of the emission sources from all cells in the network. A case study demonstrates that minimizing travel cost and reducing air pollutants may not be always achieved simultaneously. The traffic assignment procedure can effectively reduce emission concentrations at those locations with the worst air quality conditions, with only a marginal increase in travel time and average emission concentration in the network.  相似文献   

2.
This paper establishes a link between an activity-based model for the Greater Toronto Area (GTA), dynamic traffic assignment, emission modelling, and air quality simulation. This provides agent-based output that allows vehicle emissions to be tracked back to individuals and households who are producing them. In addition, roadway emissions are dispersed and the resulting ambient air concentrations are linked with individual time-activity patterns in order to assess population exposure to air pollution. This framework is applied to evaluate the effects of a range of policy interventions and 2031 scenarios on the generation of vehicle emissions and greenhouse gases in the GTA. Results show that the predicted increase of approximately 2.6 million people and 1.3 million jobs in the region by 2031 compared to 2001 levels poses a major challenge in achieving meaningful reductions in GHGs and air pollution.  相似文献   

3.
In this study, the effects of isolated traffic calming measures and area-wide calming schemes on air quality in a dense neighborhood were estimated using a combination of microscopic traffic simulation, emission, and dispersion modeling. Results indicated that traffic calming measures did not have as large an effect on nitrogen dioxide (NO2) concentrations as the effect observed on nitrogen oxide (NOx) emissions. Changes in emissions resulted in highly disproportional changes in pollutant levels due to daily meteorological conditions, road geometry and orientation with respect to the wind. Average NO2 levels increased between 0.1% and 10% with respect to the base-case while changes in NOx emissions varied between 5% and 160%. Moreover, higher wind speeds decreased NO2 concentrations on both sides of the roadway. Among the traffic calming measures, speed bumps produced the highest increases in NO2 levels.  相似文献   

4.
This paper describes the development of an integrated approach for assessing ambient air quality and population exposure as a result of road passenger transportation in large urban areas. A microsimulation activity-based travel demand model for the Greater Toronto Area – the Travel Activity Scheduler for Household Agents – is extended with capabilities for modelling and mapping of traffic emissions and atmospheric dispersion. Hourly link-based emissions and zone-based soak emissions were estimated. In addition, hourly roadway emissions were dispersed at a high spatial resolution and the resulting ambient air concentrations were linked with individual time-activity patterns derived from the model to assess person-level daily exposure. The method results in an explicit representation of the temporal and spatial variation in emissions, ambient air quality, and population exposure.  相似文献   

5.
This paper examines the impact of traffic-flow on CO, NO2 and PM emissions at two distinct traffic junctions and evaluates the use of emission factors. The study includes three scenarios regarding pollutant emissions, which combine a field, experimental and semi-empirically estimated traffic parameters for free, interrupted and congested traffic-flow conditions. It evaluates the emission patterns for heterogeneity in traffic characteristics of both junctions. The results suggest the corrections to be made to emission factors at traffic junctions for better forecast of air quality.  相似文献   

6.
Coupling a traffic microsimulation with an emission model is a means of assessing fuel consumptions and pollutant emissions at the urban scale. Dealing with congested states requires the efficient capture of traffic dynamics and their conditioning for the emission model. Two emission models are investigated here: COPERT IV and PHEM v11. Emission calculations were performed at road segments over 6 min periods for an area of Paris covering 3 km2. The resulting network fuel consumption (FC) and nitrogen oxide (NOx) emissions are then compared. This article investigates: (i) the sensitivity of COPERT to the mean speed definition, and (ii) how COPERT emission functions can be adapted to cope with vehicle dynamics related to congestion. In addition, emissions are evaluated using detailed traffic output (vehicle trajectories) paired with the instantaneous emission model, PHEM.COPERT emissions are very sensitive to mean speed definition. Using a degraded speed definition leads to an underestimation ranging from −13% to −25% for fuel consumption during congested periods (from −17% to −36% respectively for NOx emissions). Including speed distribution with COPERT leads to higher emissions, especially under congested conditions (+13% for FC and +16% for NOx). Finally, both these implementations are compared to the instantaneous modeling chain results. Performance indicators are introduced to quantify the sensitivity of the coupling to traffic dynamics. Using speed distributions, performance indicators are more or less doubled compared to traditional implementation, but remain lower than when relying on trajectories paired with the PHEM emission model.  相似文献   

7.
This paper develops an integrated model for reliable estimation of daily vehicle fuel savings and emissions using an integrated traffic emission modeling approach created by incorporating the US Environmental Protection Agency’s vehicle emission model, MOVES, and the PARAMICS microscopic traffic simulation package. A case study is conducted to validate the model using a well-calibrated road network in Greenville, South Carolina. For each transportation fuel considered, both emission and fuel consumption impacts are evaluated based on market shares.  相似文献   

8.
Average roadway segment travel speeds play an important role in estimating stabilized running vehicle emissions. Currently stabilized, or hot, running emissions are computed based on speeds produced during the travel demand modeling process. Speed data from the travel forecasting models are widely recognized as being insufficiently accurate for air quality purposes. Frequently post-processing techniques are seen as the most cost-effective means of improving the accuracy of the speed estimates. Using the Sacramento Metropolitan area, this paper focuses on the impacts of different speed post-processors on regional peak period emissions inventories. The results indicated that most post-processed speeds produce consistently and significantly higher running emissions, particularly in locations with heavy traffic. The observed differences in emissions between different types of post-processed speeds vary with congestion level, pollutant type and the underlying approach encapsulated in the speed post-processor calculations. The Sacramento case study suggests that the post-processor used to develop speeds for the purposes of calculating on-road emissions inventories can significantly influence the emissions inventories.  相似文献   

9.
This study focuses on the development of a microscopic traffic simulation and emission modeling system which aims at quantifying the effects of different types of traffic calming measures on vehicle emissions both at a link-level and at a network-level. It also investigates the effects of isolated traffic-calming measures at a corridor level and area-wide calming schemes, using a scenario analysis. Our study is set in Montreal, Canada where a traffic simulation model for a dense urban neighborhood is extended with capabilities for microscopic emission estimation. The results indicate that on average, isolated calming measures increase carbon dioxide (CO2), carbon monoxide (CO), and nitrogen oxides (NOx) emissions by 1.5, 0.3, and 1.5 %, respectively across the entire network. Area-wide schemes result in a percentage increase of 3.8 % for CO2, 1.2 % for CO, and 2.2 % for NOx across the entire network. Along specific corridors where traffic calming measures were simulated, increases in emissions of up to 83 % were observed. We also account for the effect of different measures on traffic volumes and observe moderate decreases in areas that have undergone traffic calming. In spite of traffic flow reductions, total emissions do increase.  相似文献   

10.
This paper quantifies the impact of aircraft emissions on local air quality and climate change. Aircraft emissions during the cruise cycle and the landing/take-off cycle are considered. A tool is developed that computes emission values using real-time air traffic data derived from various databases. Emissions include carbon dioxide, hydrocarbons, carbon monoxide and nitrogen oxides. The overall output is a detailed ‘emissions map’ of a given territory that enables the identification of critical emission spots including routes, airports, season, aircraft type and flight category. The method can be used for real-time monitoring of airline emissions and for policy analysis. The proposed tool and resulting outputs are illustrated in the case of the Greek airport system using domestic, international and overflights. Demand volatility driven mainly by tourism and its impact on emissions is assessed.  相似文献   

11.
Based on the national emission inventory data from different countries, heavy-duty trucks are the highest on-road PM2.5 emitters and their representation is estimated disproportionately using current modeling methods. This study expands current understanding of the impact of heavy-duty truck movement on the overall PM2.5 pollution in urban areas through an integrated data-driven modeling methodology that could more closely represent the truck transportation activities. A detailed integrated modeling methodology is presented in the paper to estimate urban truck related PM2.5 pollution by using a robust spatial regression-based truck activity model, the mobile source emission and Gaussian dispersion models. In this research, finely resolved spatial–temporal emissions were calculated using bottom-up approach, where hourly truck activity and detailed truck-class specific emissions rates are used as inputs. To validate the proposed methodology, the Cincinnati urban area was selected as a case study site and the proposed truck model was used with U.S. EPA’s MOVES and AERMOD models. The heavy-duty truck released PM2.5 pollution is estimated using observed concentrations at the urban air quality monitoring stations. The monthly air quality trend estimated using our methodology matches very well with the observed trend at two different continuous monitoring stations with Spearman’s rank correlation coefficient of 0.885. Based on emission model results, it is found that 71 percent of the urban mobile-source PM2.5 emissions are caused by trucks and also 21 percent of the urban overall ambient PM2.5 concentrations can be attributed to trucks in Cincinnati urban area.  相似文献   

12.
This study investigates the impacts of traffic signal timing optimization on vehicular fuel consumption and emissions at an urban corridor. The traffic signal optimization approach proposed integrates a TRANSIMS microscopic traffic simulator, the VT-Micro model (a microscopic emission and fuel consumption estimation model), and a genetic algorithm (GA)-based optimizer. An urban corridor consisting of four signalized intersections in Charlottesville, VA, USA, is used for a case study. The result of the case study is then compared with the best traffic signal timing plan generated by Synchro using the TRANSIMS microscopic traffic simulator. The proposed approach achieves much better performance than that of the best Synchro solution in terms of air quality, energy and mobility measures: 20% less network-wide fuel consumption, 8–20% less vehicle emissions, and nearly 27% less vehicle-hours-traveled (VHT).  相似文献   

13.
To better assess health impacts from diesel transportation sources, particle number emissions can be modeled on a road network using traffic operating parameters. In this work, real-time particle number emissions rates from two diesel transit buses were aggregated to the roadway link-level and modeled using engine parameters and then vehicle parameters. Modern statistical methods were used to identify appropriate predictor variables in the presence of multicollinearity, and controlled for correlated emission measurements made on the same day and testing route. Factor analysis helped to reduce the number of potential engine parameters to engine load, engine speed, and exhaust temperature. These parameters were incorporated in a linear mixed model that was shown to explain the variation attributable to link-characteristics. Vehicle specific power and speed were identified as two surrogate vehicle travel variables that can be used in the absence of engine parameters, although with a loss in predictive power compared to the engine parameter model. If vehicle speed is the only operating input available, including road grades in the model can significantly improve particle number emission estimates even for links with mild grade. Although the data used are specific to the buses tested, the approach can be applied to modeling emissions from other vehicle models with different engine types, exhaust systems, and engine retrofit technologies.  相似文献   

14.
In this study, we develop a Passenger Car Emission Unit (PCEU) framework for estimating traffic emissions. The idea is analogous to the use of Passenger Car Unit (PCU) for modeling the congestion effect of different vehicle types. In this approach, we integrate emission modeling and cost evaluation. Different emissions, typically speed-dependent, are integrated as an overall cost via their corresponding external costs. We then develop a normalization procedure to obtain a general trend that is applicable for all vehicle types, which is used to derive a standard cost curve. Different vehicle types with different emission standards are then mapped to this standard cost curve through their corresponding PCEUs that are to be calibrated. Once the standard cost curve and PCEUs have been calibrated, to estimate the overall cost of emission for a particular vehicle, we only need to multiply the corresponding PCEU of that vehicle type to the standard cost curve. We apply this PCEU approach to Hong Kong and obtain promising results. Compared with the results obtained by the full-blown emission model COPERT, the approach achieves high accuracy but obviates tedious inputs typically required for emission estimation.  相似文献   

15.
The commonly used photochemical air quality model, the Urban Airshed Model (UAM), requires emission estimates with grid-based, hourly resolution. In contrast, travel demand models, used to simulate the travel activity model inputs for the transportation-related emissions estimation, typically only provide traffic volumes for a specific travel period (e.g. the a.m. and p.m. peak periods). A few transportation agencies have developed procedures to allocate period-based travel demand data into hourly emission inventories for regional grid cells. Because there was no theoretical framework for disaggregating period-based volumes to hourly volumes, application of these procedures frequently relied upon a single hypothetical hourly distribution of travel volumes. This study presents a new theoretical modeling framework that integrates traffic count data and travel demand model link volume estimates to derive intra-period hourly volume estimates by trip purpose. We propose a new interpretation of the model coefficients and define hourly allocation factors by trip purpose. These allocation factors can be used to disaggregate the travel demand model ‘period-based’ simulation volumes into hourly resolution, thereby improving grid-based, hourly emission estimates in the UAM.  相似文献   

16.
The aim of this research is the implementation of a GPS-based modelling approach for improving the characterization of vehicle speed spatial variation within urban areas, and a comparison of the resulting emissions with a widely used approach to emission inventory compiling. The ultimate goal of this study is to evaluate and understand the importance of activity data for improving the road transport emission inventory in urban areas. For this purpose, three numerical tools, namely, (i) the microsimulation traffic model (VISSIM); (ii) the mesoscopic emissions model (TREM); and (iii) the air quality model (URBAIR), were linked and applied to a medium-sized European city (Aveiro, Portugal). As an alternative, traffic emissions based on a widely used approach are calculated by assuming a vehicle speed value according to driving mode. The detailed GPS-based modelling approach results in lower total road traffic emissions for the urban area (7.9, 5.4, 4.6 and 3.2% of the total PM10, NOx, CO and VOC daily emissions, respectively). Moreover, an important variation of emissions was observed for all pollutants when analysing the magnitude of the 5th and 95th percentile emission values for the entire urban area, ranging from −15 to 49% for CO, −14 to 31% for VOC, −19 to 46% for NOx and −22 to 52% for PM10. The proposed GPS-based approach reveals the benefits of addressing the spatial and temporal variability of the vehicle speed within urban areas in comparison with vehicle speed data aggregated by a driving mode, demonstrating its usefulness in quantifying and reducing the uncertainty of road transport inventories.  相似文献   

17.
Subnational incentives to adopt zero emission vehicles (ZEVs) are critical for reducing the external economic damages posed by transportation to air quality and the climate. Few studies estimate these damages for on-road freight, especially at scales relevant for subnational policies requiring cross-border cooperation. Here, we assess the damages to US receptors from emissions of air pollutants (PM2.5, NOx, SO2, NH3), and greenhouse gases (CO2, CH4, N2O) from medium and heavy duty freight trucking, and the benefits of ZEV adoption by census division in the Province of Ontario. We develop an integrated modelling framework connecting a travel demand model, a mobile emissions simulator, and a regression based marginal damages model of air pollutants and climate change. We estimate $1.9 billion (2010 USD) in annual cross-border damages, or $0.16/VKT, resulting from scaled up atmospheric emissions from a ‘typical day’ of medium and heavy duty truck traffic volume for Ontario in 2012. This implies approximately $8000 per truck per year in damages, which could inform an economic incentive for emission reduction. The provincial goal of 5% ZEV adoption would reduce GHG emissions in 2012 by 800 ktCO2e, yielding $89 Million (2010 USD) in cross-border benefits annually, with air quality co-benefits of $83/tCO2e. This result varies between −19% and 22% based on sensitivity analysis for travel and emissions models, though economic damages are likely the largest uncertainty source. Such advances in subnational scale integrated modeling of the environmental impacts of freight can offer insights into the sustainable design of clean freight policy and programs.  相似文献   

18.
Urban air quality is generally poor at traffic intersections due to variations in vehicles’ speeds as they approach and leave. This paper examines the effect of traffic, vehicle and road characteristics on vehicular emissions with a view to understand a link between emissions and the most likely influencing and measurable characteristics. It demonstrates the relationships of traffic, vehicle and intersection characteristics with vehicular exhaust emissions and reviews the traffic flow and emission models. Most studies have found that vehicular exhaust emissions near traffic intersections are largely dependent on fleet speed, deceleration speed, queuing time in idle mode with a red signal time, acceleration speed, queue length, traffic-flow rate and ambient conditions. The vehicular composition also affects emissions. These parameters can be quantified and incorporated into the emission models. There is no validated methodology to quantify some non-measurable parameters such as driving behaviour, pedestrian activity, and road conditions  相似文献   

19.
In this paper we use simulation to analyze how flight routing network structure may change in different world regions, and how this might impact future traffic growth and emissions. We compare models of the domestic Indian and US air transportation systems, representing developing and mature air transportation systems respectively. We explicitly model passenger and airline decision-making, capturing passenger demand effects and airline operational responses, including airline network change. The models are applied to simulate air transportation system growth for networks of 49 airports in each country from 2005 to 2050. In India, the percentage of connecting passengers simulated decreases significantly (from over 40% in 2005 to under 10% in 2050), indicating that a shift in network structure towards increased point-to-point routing can be expected. In contrast, very little network change is simulated for the US airport set modeled. The simulated impact of network change on system CO2 emissions is very small, although in the case of India it could enable a large increase in demand, and therefore a significant reduction in emissions per passenger (by nearly 25%). NOx emissions at major hub airports are also estimated, and could initially reduce relative to a case in which network change is not simulated (by nearly 25% in the case of Mumbai in 2025). This effect, however, is significantly reduced by 2050 because of frequency competition effects. We conclude that network effects are important when estimating CO2 emissions per passenger and local air quality effects at hub airports in developing air transportation systems.  相似文献   

20.
Highway emissions represent a major source of many pollutants. Use of local data to model these emissions can have a large impact on the magnitude and distribution of emissions predicted and can significantly improve the accuracy of local scale air quality modeling assessments. This paper provides a comparison of top–down and bottom–up approaches for developing emission inventories for modeling in one urban area, Philadelphia, in calendar year 1999. A bottom–up approach relies on combining motor vehicle emission factors and vehicle activity data from a travel demand model estimated at the road link level to generate hourly emissions data. This approach can result in better estimates of levels and spatial distribution of on-road motor vehicle emissions than a top–down approach that relies on more aggregated information and default modeling inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号