首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Globally significant quantities of organic carbon are stored in northern permafrost soils, but little is known about how this carbon is processed by microbial communities once it enters rivers and is transported to the coastal Arctic Ocean. As part of the Arctic River-Delta Experiment (ARDEX), we measured environmental and microbiological variables along a 300 km transect in the Mackenzie River and coastal Beaufort Sea, in July–August 2004. Surface bacterial concentrations averaged 6.7 × 105 cells mL− 1 with no significant differences between sampling zones. Picocyanobacteria were abundant in the river, and mostly observed as cell colonies. Their concentrations in the surface waters decreased across the salinity gradient, dropping from 51,000 (river) to 30 (sea) cells mL− 1. There were accompanying shifts in protist community structure, from diatoms, cryptophytes, heterotrophic protists and chrysophytes in the river, to dinoflagellates, prymnesiophytes, chrysophytes, prasinophytes, diatoms and heterotrophic protists in the Beaufort Sea.Size-fractionated bacterial production, as measured by 3H–leucine uptake, varied from 76 to 416 ng C L− 1 h− 1. The contribution of particle-attached bacteria (> 3 µm fraction) to total bacterial production decreased from > 90% at the Mackenzie River stations to < 20% at an offshore marine site, and the relative importance of this particle-based fraction was inversely correlated with salinity and positively correlated with particulate organic carbon concentrations. Glucose enrichment experiments indicated that bacterial metabolism was carbon limited in the Mackenzie River but not in the coastal ocean. Prior exposure of water samples to full sunlight increased the biolability of dissolved organic carbon (DOC) in the Mackenzie River but decreased it in the Beaufort Sea.Estimated depth-integrated bacterial respiration rates in the Mackenzie River were higher than depth-integrated primary production rates, while at the marine stations bacterial respiration rates were near or below the integrated primary production rates. Consistent with these results, PCO2 measurements showed surface water supersaturation in the river (mean of 146% of air equilibrium values) and subsaturation or near-saturation in the coastal sea. These results show a well-developed microbial food web in the Mackenzie River system that will likely convert tundra carbon to atmospheric CO2 at increasing rates as the arctic climate continues to warm.  相似文献   

2.
The dissolved lead was studied in the whole salinity gradient of the system composed of the Loire estuary and the North Biscay continental shelf. About 130 samples were collected in winter 2001 and spring 2002 during Nutrigas and Gasprod campaigns (Programme PNEC-Golfe de Gascogne, RV Thalassa) and metal measurements were conducted on board by Potentiometric Stripping Analysis. In the Loire estuary, levels of dissolved lead ranged from 0.15 to 0.24 nM and from 0.04 to 0.26 nM in winter and spring, respectively. Compared to the concentrations reported in 1987 and 1990 (0.4–1.7 nM; Boutier, B., Chiffoleau, J.F., Auger, D., Truquet, I., 1993. Influence of the Loire river on dissolved lead and cadmium concentrations in coastal waters of Brittany. Estuar. Coast. Shelf S., 36:133–143, Estuarine, Coastal and Shelf Science 36, 133–143) our study indicated much lower values. The fall in concentration in the estuary could be attributed to the stopping of activity of Octel, a big manufacturer of tetra alkyl lead. Discharge in dissolved metal to the continental shelf by the Loire river was assessed as 7.5 and 1.9 kg day− 1 for winter and spring, respectively. On the continental shelf, levels of dissolved lead varied within 0.06 and 0.27 nM in winter (0.15 ± 0.06 nM, sd = 1.96, n = 49), whereas concentrations measured in spring were in the range 0.06–0.17 nM (0.09 ± 0.03 nM, sd = 1.96, n = 60). This difference in metal concentration was related to the amounts of rainfall that have fallen over the continental shelf: estimations of inputs by this way (74 and 32 kg day− 1 in winter and spring, respectively) appeared to be significantly higher than inputs from the Loire river (7.5 and 1.9 kg day− 1 in winter and spring, respectively). The distributions of dissolved metal in the surface waters highlighted the role of suspended particular matter (SPM) for a rapid “trapping” of lead near the mouth of the estuary. The vertical distributions showed, in the stratified area, a biological transfer of lead between winter and spring from surface waters to the halocline.  相似文献   

3.
Climatic changes in the Northern Hemisphere have led to remarkable environmental changes in the Arctic Ocean, which is surrounded by permafrost. These changes include significant shrinking of sea-ice cover in summer, increased time between sea-ice break-up and freeze-up, and Arctic surface water freshening and warming associated with melting sea-ice, thawing permafrost, and increased runoff. These changes are commonly attributed to the greenhouse effect resulting from increased atmospheric carbon dioxide (CO2) concentration and other non-CO2 radiatively active gases (methane, nitrous oxide). The greenhouse effect should be most pronounced in the Arctic where the largest air CO2 concentrations and winter–summer variations in the world for a clean background environment were detected. However, the air–land–shelf interaction in the Arctic has a substantial impact on the composition of the overlying atmosphere; as the permafrost thaws, a significant amount of old terrestrial carbon becomes available for biogeochemical cycling and oxidation to CO2. The Arctic Ocean's role in determining regional CO2 balance has been ignored, because of its small size (only  4% of the world ocean area) and because its continuous sea-ice cover is considered to impede gaseous exchange with the atmosphere so efficiently that no global climate models include CO2 exchange over sea-ice. In this paper we show that: (1) the Arctic shelf seas (the Laptev and East-Siberian seas) may become a strong source of atmospheric CO2 because of oxidation of bio-available eroded terrestrial carbon and river transport; (2) the Chukchi Sea shelf exhibits the strong uptake of atmospheric CO2; (3) the sea-ice melt ponds and open brine channels form an important spring/summer air CO2 sink that also must be included in any Arctic regional CO2 budget. Both the direction and amount of CO2 transfer between air and sea during open water season may be different from transfer during freezing and thawing, or during winter when CO2 accumulates beneath Arctic sea-ice; (4) direct measurements beneath the sea ice gave two initial results. First, a drastic pCO2 decrease from 410 μatm to 288 μatm, which was recorded in February–March beneath the fast ice near Barrow using the SAMI-CO2 sensor, may reflect increased photosynthetic activity beneath sea-ice just after polar sunrise. Second, new measurements made in summer 2005 beneath the sea ice in the Central Basin show relatively high values of pCO2 ranging between 425 μatm and 475 μatm, values, which are larger than the mean atmospheric value in the Arctic in summertime. The sources of those high values are supposed to be: high rates of bacterial respiration, import of the Upper Halocline Water (UHW) from the Chukchi Sea (CS) where values of pCO2 range between 400 and 600 μatm, a contribution from the Lena river plume, or any combination of these sources.  相似文献   

4.
The Mackenzie River is the largest river on the North American side of the Arctic and its huge freshwater and sediment load impacts the Canadian Beaufort Shelf. Huge quantities of sediment and associated organic carbon are transported in the Mackenzie plume into the interior of the Arctic Ocean mainly during the freshet (May to September). Changing climate scenarios portend increased coastal erosion and resuspension that lead to altered river-shelf-slope particle budgets. We measured sedimentation rates, suspended particulate matter (SPM), particle size and settling rates during ice-free conditions in Kugmallit Bay (3–5 m depth). Additionally, measurements of erosion rate, critical shear stress, particle size distribution and resuspension threshold of bottom sediments were examined at four regionally contrasting sites (33–523 m depth) on the Canadian Beaufort Shelf using a new method for assessing sediment erosion. Wind induced resuspension was evidenced by a strong relationship between SPM and wind speed in Kugmallit Bay. Deployment of sediment traps showed decreasing sedimentation rates at sites along an inshore–offshore transect ranging from 5400 to 3700 g m− 2 day− 1. Particle settling rates and size distributions measured using a Perspex settling chamber showed strong relationships between equivalent spherical diameter (ESD) and particle settling rates (r= 0.91). Mean settling rates were 0.72 cm s− 1 with corresponding ESD values of 0.9 mm. Undisturbed sediment cores were exposed to shear stress in an attempt to compare differences in sediment stability across the shelf during September to October 2003. Shear was generated by vertically oscillating a perforated disc at controlled frequencies corresponding to calibrated shear velocity using a piston grid erosion device. Critical (Type I) erosion thresholds (u) varied between 1.1 and 1.3 cm s− 1 with no obvious differences in location. Sediments at the deepest site Amundsen Gulf displayed the highest erosion rates (22–54 g m− 2 min− 1) with resuspended particle sizes ranging from 100 to 930 µm for all sites. There was no indication of biotic influence on sediment stability, although our cores did not display a fluff layer of unconsolidated sediment. Concurrent studies in the delta and shelf region suggest the importance of a nepheloid layer which transports suspended particles to the slope. Continuous cycles of resuspension, deposition, and horizontal advection may intensify with reduction of sea ice in this region. Our measurements coupled with studies of circulation and cross-shelf exchange allow parameterization and modeling of particle dynamics and carbon fluxes under various climate change scenarios.  相似文献   

5.
Suspended material, nutrients and organic matter in Mackenzie River water were tracked along a 300 km transect from Inuvik (Northwest Territories, Canada), across the estuarine salinity gradient in Kugmallit Bay, to offshore marine stations on the adjacent Mackenzie Shelf. All particulates measured (SPM, POC, PN, PP) declined by 87–95% across the salinity gradient and levels were generally below conservative mixing. Organic carbon content of suspended material decreased from 3.1% in the river to 1.7% in shelf surface waters while particulate C:N concurrently decreased from 17.1 to 8.6. Nitrate and silicate concentrations declined by more than 90% across the salinity gradient, with nitrate concentrations often below the conservative mixing line. Phosphate concentrations increased from 0.03 μmol/L in the river to 0.27 μmol/L over shelf waters, thereby changing the inorganic nutrient regime downstream from P to N limitation. Dissolved organic carbon decreased conservatively offshore while dissolved organic N and P persisted at high levels in the Mackenzie plume relative to river water, increasing 2.7 and 25.3 times respectively. A deep chlorophyll-a maximum was observed at two offshore stations and showed increases in most nutrients, particulates and organic matter relative to the rest of the water column. During river passage through the Mackenzie estuary, particulate matter, dissolved organic carbon and inorganic nutrients showed sedimentation, dilution and biological uptake patterns common to other arctic and non-arctic estuaries. Alternatively, inorganic content of particles increased offshore and dissolved organic N and P increased substantially over the shelf, reaching concentrations among the highest reported for the Arctic Ocean. These observations are consistent with the presence of a remnant ice-constrained (‘stamukhi’) lake from the freshet period and a slow flushing river plume constrained by sea-ice in close proximity to shore. Nutrient limitation in surface shelf waters during the ARDEX cruise contributed to the striking deep chlorophyll-a maximum at 21 m where phytoplankton communities congregated at the margin of nutrient-rich deep ocean waters.  相似文献   

6.
We examined the influence of the Mackenzie River plume on sinking fluxes of particulate organic and inorganic material on the Mackenzie Shelf, Canadian Arctic. Short-term particle interceptor traps were deployed under the halocline at 3 stations across the shelf during fall 2002 and at 3 stations along the shelf edge during summer 2004. During the two sampling periods, the horizontal patterns in sinking fluxes of particulate organic carbon (POC) and chlorophyll a (chl a) paralleled those in chl a biomass within the plume. Highest sinking fluxes of particulate organic material occurred at stations strongly influenced by the river plume (maximum POC sinking fluxes at 25 m of 98 mg C m− 2 d− 1 and 197 mg C m− 2 d− 1 in 2002 and 2004, respectively). The biogeochemical composition of the sinking material varied seasonally with phytoplankton and fecal pellets contributing considerably to the sinking flux in summer, while amorphous detritus dominated in the fall. Also, the sinking phytoplankton assemblage showed a seasonal succession from a dominance of diatoms in summer to flagellates and dinoflagellates in the fall. The presence of the freshwater diatom Eunotia sp. in the sinking assemblage directly underneath the river plume indicates the contribution of a phytoplankton community carried by the plume to the sinking export of organic material. Yet, increasing chl a and BioSi sinking fluxes with depth indicated an export of phytoplankton from the water column below the river plume during summer and fall. Grazing activity, mostly by copepods, and to a lesser extent by appendicularians, appeared to occur in a well-defined stratum underneath the river plume, particularly during summer. These results show that the Mackenzie River influences the magnitude and composition of the sinking material on the shelf in summer and fall, but does not constitute the only source of material sinking to depth at stations influenced by the river plume.  相似文献   

7.
We use hydrographic, current, and microstructure measurements, and tide-forced ocean models, to estimate benthic and interfacial mixing impacting the evolution of a bottom-trapped outflow of dense shelf water from the Drygalski Trough in the northwestern Ross Sea. During summer 2003 an energetic outflow was observed from the outer shelf ( 500 m isobath) to the  1600 m isobath on the continental slope. Outflow thickness was as great as  200 m, and mean speeds were  0.6 m s− 1 relative to background currents exceeding  1 m s− 1 that were primarily tidal in origin. No outflow was detected on the slope in winter 2004, although a thin layer of dense shelf water was present on the outer shelf. When the outflow was well-developed, the estimated benthic stress was of order one Pascal and the bulk Froude number over the upper slope exceeded one. Diapycnal scalar diffusivity (Kz) values in the transition region at the top of the outflow, estimated from Thorpe-scale analysis of potential density and measurements of microscale temperature gradient from sensors attached to the CTD rosette, were of order 10− 3−10− 2 m2 s− 1. For two cases where the upper outflow boundary was particularly sharply defined, entrainment rate we was estimated from Kz and bulk outflow parameters to be  10− 3 m s− 1 ( 100 m day− 1). A tide-forced, three-dimensional primitive equation ocean model with Mellor-Yamada level 2.5 turbulence closure scheme for diapycnal mixing yields results consistent with a significant tidal role in mixing associated with benthic stress and shear within the stratified ocean interior.  相似文献   

8.
This paper presents new data on distribution patterns of modern benthic foraminifera and other microfossils from the Canadian Arctic, specifically the Beaufort Shelf and slope. The material was collected in June to August of 2004 and is the first of its kind in this area to be collected since 1970. We examined the smaller sizes (45–63µm) as well as > 63µm and discovered that many species had been severely underrepresented in previous studies. Deep sea forms, that had been overlooked previously, were common on the shelf; two species (Elphidiella arctica and Ammotium cassis) appeared in preliminary results to be indicators of methane seepage; and it was possible to make determinations of sea-ice coverage using a combination of foraminifera and tintinnids (planktic ciliates). Our data indicated the presence of many of the same species as previous studies from this area, but improved techniques of sample processing greatly increased the number of specimens and species found (particularly the small deep sea arctic species Buliminella hensoni and Bolivina arctica) which provide much more reliable data for paleoceanographic determinations. One of the primary objectives for this work was to provide baseline data to help determine paleo-ice cover; these data cover a broad range of conditions on the Beaufort Shelf that make it possible to achieve this objective as well as improving what it is known about the assemblages on this shelf as compared to other arctic shelf areas, such as the Siberian Shelf).  相似文献   

9.
As part of the Canadian Arctic Shelf Exchange Study (CASES), we investigated the spatial and seasonal distributions of viruses in relation to biotic (bacteria, chlorophyll-a (chl a)) and abiotic variables (temperature, salinity and depth). Sampling occurred in the southern Beaufort Sea Shelf in the region of the Amundsen Gulf and Mackenzie Shelf, between November 2003 and August 2004. Bacterial and viral abundances estimated by epifluorescence microscopy (EFM) and flow cytometry (FC) were highly correlated (r2 = 0.89 and r2 = 0.87, respectively), although estimates by EFM were slightly higher (FC = 1.08 × EFM + 0.12 and FC = 1.07 × EFM + 0.43, respectively). Viral abundances ranged from 0.13 × 106 to 23 × 106 ml− 1, and in surface waters were ~ 2-fold higher during the spring bloom in May and June and ~ 1.5-fold higher during July and August, relative to winter abundances. These increases were coincident with a ~ 6-fold increase in chl a during spring and a ~ 4-fold increase in bacteria during summer. Surface viral abundances near the Mackenzie River were ~ 2-fold higher than in the Mackenzie Shelf and Amundsen Gulf regions during the peak summer discharge, concomitant with a ~ 5.5-fold increase in chl a (up to 2.4 μg l− 1) and a ~ 2-fold increase in bacterial abundance (up to 22 × 105 ml− 1). Using FC, two subgroups of viruses and heterotrophic bacteria were defined. A low SYBR-green fluorescence virus subgroup (V2) representing ~ 71% of the total viral abundance, was linked to the abundance of high nucleic acid fluorescence (HNA) bacteria (a proxy for bacterial activity), which represented 42 to 72% of the bacteria in surface layers. A high SYBR-green fluorescence viral subgroup (V1) was more related to high chl a concentrations that occurred in surface waters during spring and at stations near the Mackenzie River plume during the summer discharge. These results suggest that V1 infect phytoplankton, while most V2 are bacteriophages. On the Beaufort Sea shelf, viral abundance displayed seasonal and spatial variations in conjunction with chl a concentration, bacterial abundance and composition, temperature, salinity and depth. The highly dynamic nature of viral abundance and its correlation with increases in chl a concentration and bacterial abundance implies that viruses are important agents of microbial mortality in Arctic shelf waters.  相似文献   

10.
Methane (CH4) concentrations were measured in the water column, in sediment porewaters, and in atmospheric air, in the Ría de Vigo, NW Spain, during both the onset (April 2003) and at the end of (September 2004) seasonal upwelling. In addition, CH4 concentration and stable isotopic signatures (δ13CH4) were measured in porewaters, and sediment methanogenesis and aerobic oxidation of CH4 were determined in sediment incubations. Surface water column CH4 (2 m depth) was in the range 3–180 nmol l− 1 (110–8500% saturation) and followed a generally landward increase but with localised maxima in both the inner and middle Ría. These maxima were consistent with CH4 inputs from underlying porewaters in which CH4 concentrations were up to 3 orders of magnitude higher (maximum 350 μmol l− 1). Surface water CH4 concentrations were approximately three times higher in September than in April, consistent with a significant benthic CH4 flux driven by enhanced sediment methanogenesis following the summer productivity maximum. CH4 and δ13CH4 in sediment porewaters and in incubated sediment slurries (20 °C) revealed significant sediment CH4 oxidation, with an apparent isotopic fractionation factor (rc) of  1.004. Using turbulent diffusion models of air–sea exchange we estimate an annual emission of atmospheric CH4 from the Ría de Vigo of 18–44 × 106 g (1.1–2.7 × 106 mol). This estimate is approximately 1–2 orders of magnitude lower than a previous estimate based on a bubble transport model.  相似文献   

11.
The water column above the Prestige wreckage was sampled during two consecutive campaigns: Prestinaut (December 2002) two weeks after the tanker sunk and HidroPrestige0303 (March 2003) one month after the sealing of the main fuel leaks. Samples of the original cargo fuel and the emulsified fuel in the surface of the ocean were also collected. Analysis of the fuel indicated the release of 135 kg of Cu, 1700 kg of Ni and 5300 kg of V from the original fuel to the water column, remaining 35 kg of Cu, 3100 kg of Ni and 13,800 kg of V in the emulsified fuel. The metal partitioning between the water column and the emulsioned floating fuel, Cu > Ni ~ V, are in accordance with the stability index for the metal–nitrogen bond in metalloporphyrins. This release had an impact on dissolved trace metal concentrations in the water column. An increase on dissolved copper (2.8–4.7 nM) and nickel (2.2–8.0 nM) with respect to natural values (1–3 nM for Cu and 1.6–5 nM for Ni) was observed. Values for vanadium (28–35 nM) were in the range of pristine North Atlantic waters (30–36 nM). This contamination was especially observed in the upper water column (0–50 m), associated with the mixing of seawater with the fuel moving upwards, and in deep waters, where the residence time of fuel is higher. Future research in this field should focus on the environmental variables and the processes that control the release of contaminants from fuels for a better assessment of the contamination in oil-spill events.  相似文献   

12.
The river–sea system consisting of the Gaoping (new spelling according to the latest government's directive, formerly spelled Kaoping) River (KPR), shelf, and Submarine Canyon (KPRSC) located off southern Taiwan is an ideal natural laboratory to study the source, pathway, transport, and fate of terrestrial substances. In 2004 during the flood season of the KPR, a system-wide comprehensive field experiment was conducted to investigate particle dynamics from a source-to-sink perspective in the KPRSC with the emphasis on the effect of particle size on the transport, settling, and sedimentation along the pathway. This paper reports the findings from (1) two sediment trap moorings each configured with a Technicap PPS 3/3 sediment trap, and an acoustic current meter (Aquadopp); (2) concurrent hydrographic profiling and water sampling was conducted over 8 h next to the sediment trap moorings; and (3) box-coring in the head region of the submarine canyon near the mooring sites. Particle samples from sediment traps were analyzed for mass fluxes, grain-size composition, total organic carbon (TOC) and nitrogen (TN), organic matter (OM), carbonate, biogenic opal, polycyclic aromatic hydrocarbon (PAH), lithogenic silica and aluminum, and foraminiferal abundance. Samples from box cores were analyzed for grain-size distribution, TOC, particulate organic matter (POM), carbonate, biogenic opal, water content, and 210Pbex. Water samples were filtered through 500, 250, 63, 10 µm sieves and 0.4 µm filter for the suspended sediment concentration of different size-classes.Results show that the river and shelf do not supply all the suspended particles near the canyon floor. The estimated mass flux near the canyon floor exceeds 800 g/m2/day, whose values are 2–7 times higher than those at the upper rim of the canyon. Most of the suspended particles in the canyon are fine-grained (finer than medium silt) lithogenic sediments whose percentages are 90.2% at the upper rim and 93.6% in the deeper part of the canyon.As suspended particles settle through the canyon, their size-composition shows a downward fining trend. The average percentage of clay-to-fine-silt particles (0.4–10 µm) in the water samples increases from 22.7% above the upper rim of the canyon to 56.0% near the bottom of the canyon. Conversely, the average percentage of the sand-sized (> 63 µm) suspended particles decreases downward from 32.0% above the canyon to 12.0% in the deeper part of the canyon. Correspondingly, the substrate of the canyon is composed largely of hemipelagic lithogenic mud. Parallel to this downward fining trend is the downward decrease of concentrations of suspended nonlithogenic substances such as TOC and PAH, despite of their affinity to fine-grained particles.On the surface of the canyon, down-core variables (grain size, 210Pbex activity, TOC, water content) near the head region of the canyon show post-depositional disturbances such as hyperpycnite and turbiditic deposits. These deposits point to the occurrences of erosion and deposition related to high-density flows such as turbidity currents, which might be an important process in submarine canyon sedimentation.  相似文献   

13.
During 2004, 10 samplings were performed in order to measure dissolved methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in the surface waters of Río San Pedro, a tidal creek in the salt marsh area of the Bay of Cádiz (SW Spain). The inner partvs of the creek is affected by the inputs coming from an intensive fish farm and the drainage of an extensive salt marsh area.Dissolved CH4, CO2 and N2O concentrations ranged from 11 to 88 nM, 36 to 108 μM and 14 to 50 nM, respectively. Surface waters were in all cases oversaturated with respect to the atmosphere, reaching values of up to 5000% for CH4, 1240% for CO2 and 840% for N2O. Dissolved CH4, CO2 and N2O showed a significant tidal and seasonal variability. Over a tidal cycle, concentrations were always highest during low tide, which points to the influence of the inputs from the fish farm effluent and the drainage of the adjacent salt marsh area, as well as in situ production within the system. Dissolved CH4, CO2 and N2O seasonal patterns were similar and showed maximum concentrations in summer conditions. Using four different parameterizations to calculate the gas transfer coefficients [Liss, P.S. and Merlivat, L., 1986. Air-sea exchange rates: introduction and synthesis. In P. Buat-Ménard (Ed.), The Role of Air-Sea Exchanges in Geochemical Cycling. Reidel, Dordrecht, The Netherlands, p. 113–127.; Clark, J.F., Schlosser, P., Simpson, H.J., Stute, M., Wanninkhof, R., and Ho, D.T., 1995. Relationship between gas transfer velocities and wind speeds in the tidal Hudson River determined by the dual tracer technique. In: B. Jähne and E. Monahan (Eds.), Air-Water Gas Transfer: AEON Verlag and Studio, Hanau, Germany, pp. 785–800.; Carini, S., Weston, N., Hopkinson, G., Tucker, J., Giblin, A. and Vallino, J., 1996. Gas exchanges rates in the Parker River estuary, Massachusetts. Biol. Bull., 191: 333–334.; Kremer, J.N., Reischauer, A. and D'Avanzo, C., 2003. Estuary-specific variation in the air-water gas exchange coefficient for oxygen. Estuaries, 26: 829–836.], the averaged air–water fluxes of CH4, CO2 and N2O from the creek to the atmosphere ranged between 34 and 150 μmol CH4 m− 2 day− 1, 73 and 177 mmol CO2 m− 2 day− 1 and 24 and 62 μmol N2O m−2 day−1, respectively.  相似文献   

14.
Depth profiles of heterotrophic bacteria abundance were measured weekly over a 6-month period from December to May in Franklin Bay, a 230 m-deep coastal Arctic Ocean site of the southeastern Beaufort Sea. Total bacteria, low nucleic acid (LNA) and high nucleic acid (HNA) bacteria abundances were measured using flow cytometry after SYBR Green I staining. The HNA bacteria abundance in surface waters started to increase 5–6 weeks after phytoplankton growth resumed in spring, increasing from 1 × 105 to 3 × 105 cells mL− 1 over an 8-week period, with a net growth rate of 0.018 d− 1. LNA bacteria response was delayed by more than two months relative to the beginning of the phytoplankton biomass accumulation and had a lower net growth rate of 0.013 d− 1. The marked increase in bacterial abundance occurred before any significant increase in organic matter input from river discharge (as indicated by the unchanged surface water salinity and DOC concentrations), and in the absence of water temperature increase. The abundance of bacteria below the halocline was relatively high until January (up to 5 × 105 cells mL− 1) but then decreased to values close to 2 × 105 cells mL− 1. The three-fold bacterial abundance increase observed in surface waters in spring was mostly due to HNA bacteria, supporting the idea that these cells are the most active.  相似文献   

15.
During a hydrographic survey in January 2006 the spreading of inflowing saline water was observed in the Arkona Basin (Western Baltic Sea). Two bottom mounted ‘pulse coherent’ acoustic Doppler profilers (PC-ADP) were used to measure the near-bottom current field of the dense plume with a high temporal (1 s) and spatial resolution (5 cm). In order to estimate the dissipation rate of turbulent kinetic energy () a structure function approach was applied to the beam velocity data. Simultaneous measurements with a microstructure shear profiler (MSS) and an acoustic Doppler velocimeter (ADV) supplied independent data for the verification of the structure function method. Additional measurements with standard CTD, near-bottom towed and vessel mounted acoustic Doppler current profilers (ADCP) completed the data set.The estimated dissipation rates from the structure function approach fit well with the values derived from the ADV and the MSS probe. It is shown that the structure function approach is a reliable and easily applicable method to derive estimates of TKE dissipation rates from PC-ADP beam velocities. The observed dissipation rates ranged between 5 · 10− 6 and 1 · 10− 8 W kg− 1 depending on the hydrographic conditions. Inside the plume the dissipation rates exceeded that of the overlaying brackish water by two orders of magnitude. Since the noise level of velocity data in pulse coherent mode is considerably lower than in the Doppler mode the PC-ADP can also be used for estimates in marine environments with low turbulence level. Reynolds stresses estimated from the PC-ADP and the ADV agreed well at the same depth level. TKE production derived from PC-ADP measurements compared reasonably well with the dissipation rate of TKE in a varying environment.  相似文献   

16.
Production of the marine calanoid copepod Acartia omorii was measured from 2 October 1991 to 8 October 1992 at a station in Ilkwang Bay on the southeastern coast of Korea. A. omorii (nauplii + copepodites + adults) were present in the plankton throughout the year, with seasonal variation in abundance. Biomass of A. omorii was averaged at 0.44 mgC m− 3, with peaks in February and July, and relatively low biomass in late summer and fall. Egg production rate ranged from 2.4 to 151.9 μgC m− 3 day− 1, which was equivalent to 95–6075 eggs m− 3 day− 1. Fecundity of an adult female was averaged at 38 eggs female− 1 day− 1. Instantaneous growth rates of copepodites were higher than those of nauplii stages. Annual production of A. omorii ranged from 33.5 mgC m− 3 year− 1 to 221 mgC m− 2 year− 1, showing a seasonal variation of daily production rate with peaks in February and July. The daily production rate of A. omorii was significantly correlated with chlorophyll a concentration. These results suggest that standing stocks and/or productivity of phytoplankton are the major influencing factors, rather than water temperature for the seasonal variation of production of A. omorii in Ilkwang Bay.  相似文献   

17.
Ninety-two box cores collected during 2004–2006 from an area of ~ 3000 km2 off the Gaoping (formerly spelled Kaoping) River, SW Taiwan, were analyzed for fallout radionuclides (210Pb, 137Cs and 7Be) to elucidate sedimentation rates and processes, and for the calculation of a sediment budget. The study area is located at an active collision margin with a narrow shelf and a submarine canyon extending essentially into the river's mouth. The results indicate fairly constant hemipelagic sedimentation in much of the open margin and for most of the time except in the inner shelf and along the axis of the canyon where sediment transport is more dynamic and is controlled by tidal current and wave activities constantly, and by fluvial floods or gravity-driven flows episodically. Sedimentation rates in the study area derived from 210Pb and constrained by 137Cs vary from 0.04 to 1.5 cm/yr, with the highest rates (> 1 cm/yr) flanking the Gaoping canyon over the upper slope (200–600 m) and the lowest rates (< 0.1 cm/yr) in the distal basin beyond the continental slope. The depocenter delineated from 210Pb-based sedimentation rates overlaps with the area covered by a flood layer resulting from super-typhoon Haitang in July 2005. Such correspondence supports the notion that the processes operating on event timescale have bearing on the formation of the sediment strata over centennial or longer timescales.From the distribution of sedimentation rates, sediment deposited in the study area annually is estimated to be 6.6 Mton/yr, accounting for less than 20% of Gaoping River's sediment load. The calculated budget, coupled with the presence of the short-lived 7Be and non-steady-state distribution of low levels of 210Pb in sediments along the canyon floor, suggests rapid transport of sediment from Gaoping River's mountainous watershed (the source) via the Gaoping (Kaoping) Submarine Canyon and adjacent channels (as the conduit and temporary sink) to the abyssal plain and the Manila Trench in the South China Sea (the ultimate sink).  相似文献   

18.
19.
Inter-annual variability of hypoxic conditions in a shallow estuary   总被引:2,自引:0,他引:2  
Water quality data from two monitoring programs in the Pamlico River Estuary (PRE) were analyzed for dissolved oxygen (DO), salinity, temperature, and nutrient concentrations. Data were collected bi-weekly at 8 stations from 1997 to 2003 by East Carolina University and continuously at three stations from 1999 to 2003 by the U.S. Geological Survey. Hypoxic conditions were observed mostly in the upper to middle estuary, but the frequency of hypoxic events varied between years. During June to October in 1997–1999 (referred to as the oxic summers) bottom water hypoxia (DO < 2 mg l− 1) was found in 8.7% of the observations. By contrast, during June to October in 2001–2003 (referred to as the hypoxic summers), 37.9% of the total measurements had DO concentrations less than 2 mg l− 1. The more frequent and/or prolonged hypoxic conditions during the hypoxic summers were closely associated with stronger salinity stratification and greater loadings of nutrient and particulate matter.Salinity stratification appeared to be governed by patterns of freshwater discharge, and frequency of wind mixing events. The “oxic” summers were characterized by continuous low freshwater inflow (except one extremely high flow event due to hurricanes), stronger northeastward wind, and more frequent wind mixing events. In contrast, the hypoxic summers were characterized by frequent moderate freshwater inflow events, and fewer wind mixing events.The greater loadings of nutrient (nitrate, ammonium, and phosphate) and particulate matter during the hypoxic summers were primarily due to higher river discharges. At the head of the PRE, no significant differences were found in concentrations of nutrient and particulate nitrogen between the oxic and the hypoxic summers. In addition, chlorophyll a concentrations were averaged above 30 μg l− 1 (maximum 167 μg l− 1) during the hypoxic summers, significantly higher than those during the oxic summers (averaged around 15 μg l− 1).  相似文献   

20.
Microstructure profiling measurements at two locations in the Yellow Sea (a deeper central basin and a local shelf break) were analyzed focusing on tidal and internal-wave induced turbulence near the bottom and in the pycnocline. A classical three-layer density structure consisting of weakly stratified surface and bottom boundary layers and a narrow sharp pycnocline is developed by the end of warm season. Turbulence in the surface layer was not influenced by the tidal forcing but by the diurnal cycle of buoyancy flux and wind forcing at the sea surface. The enhanced dissipation and diffusivity generated by the shear stress at the seafloor was found in the water interior at heights 10–15 m above the bottom with a phase shift of ~ 5–6 m/h. No internal waves, turbulence, or mixing were detected in the pycnocline in the central basin, in contrast to the pycnocline near the local shelf break wherein internal waves of various frequencies were observed all the time. The thickness of the surface layer near the local shelf break slightly exceeded that of the bottom layer (20 vs. 18 m). A 5–6 m high vertical displacement of the pycnocline, which emerged during the low tide, was arguably caused by the passage of an internal soliton of elevation. During this episode, the gradient Richardson number decreased below 0.25 due to enhanced vertical shear, leading to local generation of turbulence with dissipation rates exceeding the background level by an order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号