首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This paper deals with a fair ramp metering problem which takes into account average travel delay distribution among on-ramps for an expressway system comprising expressways, on-ramps and off-ramps. A novel spatial equity index is defined to measure the evenness of travel delay distribution among on-ramps within the predefined on-ramp groups. An ideal fair ramp metering problem therefore aims to find an optimal dynamic ramp metering rate solution that not only minimizes the total system delay, but also maximizes the equity indexes associated to the groups. Some of these objectives, however, contradict with each other, and their Pareto-optimality is explored. The fair ramp metering problem proposed in this paper is formulated as a multiobjective optimization model incorporating a modified cell-transmission model (MCTM) that captures dynamic traffic flow pattern with ramp metering operations. The MCTM then is embedded in the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to solve the multiobjective optimization model. Finally, the Interstate I-210 W expressway-ramp network in the United States is adopted to assess the methodology proposed in this paper.  相似文献   

2.
The well-known feedback ramp metering algorithm ALINEA can be applied for local ramp metering or included as a key component in a coordinated ramp metering system. ALINEA uses real-time occupancy measurements from the ramp flow merging area that may be at most a few hundred meters downstream of the metered on-ramp nose. In many practical cases, however, bottlenecks with smaller capacities than the merging area may exist further downstream, which suggests using measurements from those downstream bottlenecks. Recent theoretical and simulation studies indicate that ALINEA may lead to poorly damped closed-loop behavior in this case, but PI-ALINEA, a suitable Proportional-Integral (PI) extension of ALINEA, can lead to satisfactory control performance. This paper addresses the same local ramp-metering problem in the presence of far-downstream bottlenecks, with a particular focus on the employment of PI-ALINEA to tackle three distinct cases of bottleneck that may often be encountered in practice: (1) an uphill case; (2) a lane-drop case; and (3) an un-controlled downstream on-ramp case. Extensive simulation studies are conducted on the basis of a macroscopic traffic flow model to show that ALINEA is not capable of carrying out ramp metering in these bottleneck cases, while PI-ALINEA operates satisfactorily in all cases. A field application example of PI-ALINEA is also reported with regard to a real case of far downstream bottlenecks. With its control parameters appropriately tuned beforehand, PI-ALINEA is found to be universally applicable, with little fine-tuning required for field applications.  相似文献   

3.
A nonlinear model-predictive hierarchical control approach is presented for coordinated ramp metering of freeway networks. The utilized hierarchical structure consists of three layers: the estimation/prediction layer, the optimization layer and the direct control layer. The previously designed optimal control tool AMOC (Advanced Motorway Optimal Control) is incorporated in the second layer while the local feedback control strategy ALINEA is used in the third layer. Simulation results are presented for the Amsterdam ring-road. The proposed approach outperforms uncoordinated local ramp metering and its efficiency approaches the one obtained by an optimal open-loop solution. It is demonstrated that metering of all on-ramps, including freeway-to-freeway intersections, with sufficient ramp storage space leads to the optimal utilization of the available infrastructure.  相似文献   

4.
This paper presents an optimisation framework for motorway management via ramp metering and variable speed limit. We start with presenting a centralised global optimal control problem aiming to minimise the total travel delay in a motorway system. Given the centralised global optimal control solutions, we propose a set of decentralised ramp metering and speed control strategies which operate on a novel parsimonious dynamic platform without needing an underlying traffic model. The control strategies are applied to a case on UK M25 motorway. The results show that the proposed set of decentralised control is able to deliver a performance that is close to the global optimal ones with significantly less computational and implementation effort. This study provides new insights to motorway management.  相似文献   

5.
Ramp metering has emerged as an effective freeway control measure to ensure efficient freeway operations. A number of algorithms have been developed in recent years to ensure an effective use of ramp metering. As the performance of ramp metering depends on various factors (e.g. traffic volume, downstream traffic conditions, queue override policy etc), these algorithms should be evaluated under a wide range of traffic conditions to check their applicability and performance and to ensure their successful implementation. In view of the expenses of and confounding effects in field testing, simulation plays an important role in the evaluation of such algorithms. This paper presents an evaluation study of two ramp metering algorithms: ALINEA and FLOW. ALINEA is a local control algorithm and FLOW is an area wide coordinated algorithm. The purpose of the study is to use microscopic simulation to evaluate systematically how the level of traffic demand, queue spillback handling policy and downstream bottleneck conditions affect the performance of the algorithms. It is believed that these variables have complex interactions with ramp metering. MITSIM microscopic traffic simulator is used to perform the empirical study. The study consists of two stages. In the first stage, key input parameters for the algorithms were identified and calibrated. The calibrated parameters were then used for the second stage, where the performance of the algorithms were compared with respect to three traffic variables mentioned above using an orthogonal fraction of experiments. Regression analysis was used to identify the impacts of some of the interactions among experimental factors on the algorithms' performance, which is not otherwise possible with a tabular analysis. These results provide insights which may be helpful for design and calibration of more efficient ramp control algorithms.  相似文献   

6.
This study evaluates the expected benefits of using the ALINEA ramp metering algorithm as a method for real-time safety improvement on an urban freeway. The objective of this research is to use ramp metering to produce a significant decrease in the risk of crashes on the freeway while avoiding any significant adverse effects on operation. This is achieved by simulating the freeway during the congested period in micro-simulation and testing various ramp metering configurations to determine which provides the best results. Statistical measures developed for the same stretch of freeway using loop detector data are used to quantify the risk of crashes as well as the benefits in each of the alternative strategies. The study concludes that there are significant benefits in metering multiple ramps when the feedback ramp metering algorithm is implemented at multiple locations. It was found that increasing the number of metered on-ramps produces increasing safety benefits. Also, a shorter cycle length for each of the meters and a higher critical occupancy value leads to better results.  相似文献   

7.
The paper characterizes the behavior of the cell transmission model of a freeway, divided into N sections or cells, each with one on-ramp and one off-ramp. The state of the dynamical system is the N-dimensional vector n of vehicle densities in the N sections. A feasible stationary demand pattern induces a unique equilibrium flow in each section. However, there is an infinite set—in fact a continuum—of equilibrium states, including a unique uncongested equilibrium nu in which free flow speed prevails in all sections, and a unique most congested equilibrium ncon. In every other equilibrium ne one or more sections are congested, and nu  ne  ncon. Every equilibrium is stable and every trajectory converges to some equilibrium state.Two implications for ramp metering are explored. First, if the demand exceeds capacity and the ramps are not metered, every trajectory converges to the most congested equilibrium. Moreover, there is a ramp metering strategy that increases discharge flows and reduces total travel time compared with the no-metering strategy. Second, even when the demand is feasible but the freeway is initially congested, there is a ramp metering strategy that moves the system to the uncongested equilibrium and reduces total travel time. The two conclusions show that congestion invariably indicates wastefulness of freeway resources that ramp metering can eliminate.  相似文献   

8.
Ramp meters in the Twin Cities have been the subject of a recent test of their effectiveness, involving turning them off for eight weeks. This paper analyzes the results with and without ramp metering for several representative freeways during the afternoon peak period. Seven performance measures: mobility, equity, productivity, consumers’ surplus, accessibility, travel time variation and travel demand responses are compared. It is found that ramp meters are particularly helpful for long trips relative to short trips. Ramp metering, while generally beneficial to freeway segments, may not improve trip travel times (including ramp delays). The reduction in travel time variation comprises another benefit from ramp meters. Non-work trips and work trips respond differently to ramp meters. The results are mixed, suggesting a more refined ramp control algorithm, which explicitly considers ramp delay, is in order.  相似文献   

9.
This paper presents a modelling and optimisation framework for deriving ramp metering and variable speed control strategies. We formulate the optimal control problems aiming to minimise the travel delay on motorways based upon a macroscopic cell transmission model of traffic. The optimal ramp metering optimisation is formulated as a linear programming (LP) while the variable speed control problem is formulated as a mixed integer LP. The optimisation models are applied to a real scenario over a section of M25 motorway in the UK. This paper also includes various analyses on the sensitivity of the optimal control solutions with respect to different network configurations and model assumptions.  相似文献   

10.
This paper presents the design and evaluation process of a self-learning system for local ramp metering control. This system is developed on the basis of reinforcement learning (RL) and can deal with the problem of on-ramp queue management through a continuous learning process. A general framework of the system design including the definition of RL elements and an algorithm that can accomplish the learning process is proposed. Simulation tests are carried out to evaluate the performance of the new system. In terms of the total time spent by road users, the new system can achieve a 30% reduction from the situation of no control, a result which is competitive with the widely accepted algorithm ALINEA. Meanwhile, simulation results show that the new system can keep on-ramp queues strictly under a series of pre-specified constraints, which proves its capability of managing on-ramp queues.  相似文献   

11.
Abstract

This paper investigates a transportation scheduling problem in large-scale construction projects under a fuzzy random environment. The problem is formulated as a fuzzy, random multi-objective bilevel optimization model where the construction company decides the transportation quantities from every source to every destination according to the criterion of minimizing total transportation cost and transportation time on the upper level, while the transportation agencies choose their transportation routes such that the total travel cost is minimized on the lower level. Specifically, we model both travel time and travel cost as triangular fuzzy random variables. Then the multi-objective bilevel adaptive particle swarm optimization algorithm is proposed to solve the model. Finally, a case study of transportation scheduling for the Shuibuya Hydropower Project in China is used as a real world example to demonstrate the practicality and efficiency of the optimization model and algorithm.  相似文献   

12.
A model is developed for jointly optimizing the characteristics of a rail transit route and its associated feeder bus routes in an urban corridor. The corridor demand characteristics are specified with irregular discrete distributions which can realistically represent geographic variations. The total cost (supplier plus user cost) of the integrated bus and rail network is minimized with an efficient iterative method that successively substitutes variable values obtained through classical analytic optimization. The optimized variables include rail line length, rail station spacings, bus headways, bus stop spacings, and bus route spacing. Computer programs are designed for optimization and sensitivity analysis. The sensitivity of the transit service characteristics to various travel time and cost parameters is discussed. Numerical examples are presented for integrated transit systems in which the rail and bus schedules may be coordinated.  相似文献   

13.
With the recent increase in the deployment of ITS technologies in urban areas throughout the world, traffic management centers have the ability to obtain and archive large amounts of data on the traffic system. These data can be used to estimate current conditions and predict future conditions on the roadway network. A general solution methodology for identifying the optimal aggregation interval sizes for four scenarios is proposed in this article: (1) link travel time estimation, (2) corridor/route travel time estimation, (3) link travel time forecasting, and (4) corridor/route travel time forecasting. The methodology explicitly considers traffic dynamics and frequency of observations. A formulation based on mean square error (MSE) is developed for each of the scenarios and interpreted from a traffic flow perspective. The methodology for estimating the optimal aggregation size is based on (1) the tradeoff between the estimated mean square error of prediction and the variance of the predictor, (2) the differences between estimation and forecasting, and (3) the direct consideration of the correlation between link travel time for corridor/route estimation and forecasting. The proposed methods are demonstrated using travel time data from Houston, Texas, that were collected as part of the automatic vehicle identification (AVI) system of the Houston Transtar system. It was found that the optimal aggregation size is a function of the application and traffic condition.
Changho ChoiEmail:
  相似文献   

14.
Urban traffic corridors are often controlled by more than one agency. Typically in North America, a state of provincial transportation department controls freeways while another agency at the municipal or city level controls the nearby arterials. While the different segments of the corridor fall under different jurisdictions, traffic and users know no boundaries and expect seamless service. Common lack of coordination amongst those authorities due to lack of means for information exchange and/or possible bureaucratic ‘institutional grid-lock’ could hinder the full potential of technically-possible integrated control. Such institutional gridlock and related lack of timely coordination amongst the different agencies involved can have a direct impact on traffic gridlock. One potential solution to this problem is through integrated automatic control under intelligent transportation systems (ITS). Advancements in ITS and communication technology have the potential to considerably reduce delay and congestion through an array of network-wide traffic control and management strategies that can seamlessly cross-jurisdictional boundaries. Perhaps two of the most promising such control tools for freeway corridors are traffic-responsive ramp metering and/or dynamic traffic diversion possibly using variable message signs (VMS). Technically, the use of these control methods separately might limit their potential usefulness. Therefore, integrated corridor control using ramp metering and VMS diversion simultaneously might be synergetic and beneficial. Motivated by the above problem and potential solution approach, the aim of the research presented in this paper is to develop a self-learning adaptive integrated freeway-arterial corridor control for both recurring and non-recurring congestion. The paper introduces the use of reinforcement learning, an Artificial Intelligence method for machine learning, to provide optimal control using ramp metering and VMS routing in an integrated agent for a freeway-arterial corridor. Reinforcement learning is an approach whereby the control agent directly learns optimal strategies via feedback reward signals from its environment. A simple but powerful reinforcement learning method known as Q-learning is used. Results from an elaborate simulation study on a key corridor in Toronto are very encouraging and discussed in the paper.  相似文献   

15.
This article presents a study on freeway networks instrumented with coordinated ramp metering and the ability of such control systems to produce arbitrarily complex congestion patterns within the dynamical limits of the traffic system. The developed method is used to evaluate the potential for an adversary with access to control infrastructure to enact high-level attacks on the underlying freeway system. The attacks are executed using a predictive, coordinated ramp metering controller based on finite-horizon optimal control and multi-objective optimization techniques. The efficacy of the control schemes in carrying out the prescribed attacks is determined via simulations of traffic network models based on the cell transmission model with onramps modeled as queue buffers. Freeway attacks with high-level objectives are presented on two illustrative examples: congestion-on-demand, which aims to create precise, user-specified pockets of congestion, and catch-me-if-you-can, which attempts to aid a fleeing vehicle from pursuant vehicles.  相似文献   

16.
Abstract

This paper revisits the classical transit scheduling problem and investigates the relationship between stop spacing and headway, considering realistic wait time and operable transit capacity. Headway and stop spacing are important determinants for planning a transit system, which influence the service level as well as the cost of operation. A mathematical model is developed, and the objective function is user travel time which is minimized by the optimized stop spacing and headway, subject to the constraints of operable fleet size and route capacity. Optimal stop spacing and headway solutions are obtained in a numerical example. Sensitivity analysis is conducted, and the effect of model parameters on user travel time is explored.  相似文献   

17.
We propose a fuzzy logic control for the integrated signal operation of a diamond interchange and its ramp meter, to improve traffic flows on surface streets and motorway. This fuzzy logic diamond interchange (FLDI) comprises of three modules: fuzzy phase timing (FPT) module that controls the green time extension of the current phase, phase logic selection (PLS) module that decides the next phase based on the pre‐defined phase sequence or phase logic and, fuzzy ramp‐metering (FRM) module that determines the cycle time of the ramp meter based on current traffic volumes and conditions of the surface streets and the motorways. The FLDI is implemented in Advanced Interactive Microscopic Simulator for Urban and Non‐Urban Network Version 6 (AIMSUN 6), and compared with the traffic actuated signal control. Simulation results show that the FLDI outperforms the traffic‐actuated models with lower system total travel time, average delay, and improvements in downstream average speed and average delay. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
We study the use of the System Optimum (SO) Dynamic Traffic Assignment (DTA) problem to design optimal traffic flow controls for freeway networks as modeled by the Cell Transmission Model, using variable speed limit, ramp metering, and routing. We consider two optimal control problems: the DTA problem, where turning ratios are part of the control inputs, and the Freeway Network Control (FNC), where turning ratios are instead assigned exogenous parameters. It is known that relaxation of the supply and demand constraints in the cell-based formulations of the DTA problem results in a linear program. However, solutions to the relaxed problem can be infeasible with respect to traffic dynamics. Previous work has shown that such solutions can be made feasible by proper choice of ramp metering and variable speed limit control for specific traffic networks. We extend this procedure to arbitrary networks and provide insight into the structure and robustness of the proposed optimal controllers. For a network consisting only of ordinary, merge, and diverge junctions, where the cells have linear demand functions and affine supply functions with identical slopes, and the cost is the total traffic volume, we show, using the Pontryagin maximum principle, that variable speed limits are not needed in order to achieve optimality in the FNC problem, and ramp metering is sufficient. We also prove bounds on perturbation of the controlled system trajectory in terms of perturbations in initial traffic volume and exogenous inflows. These bounds, which leverage monotonicity properties of the controlled trajectory, are shown to be in close agreement with numerical simulation results.  相似文献   

19.
This paper presents an alternative approach to internalize congestion externality during the morning commute. We consider a linear freeway with multiple on-ramps and a downstream bottleneck and commuters accessing the freeway via different on-ramps try to arrive at work on time. Rather than charging congestion tolls as widely suggested by economists, we show that the old-fashioned engineering approach – ramp metering – can be a powerful tool to affect travelers’ departure time choice and thereby alter the congestion externality distribution among travelers. With carefully designed time-dependent metering plans, travelers from different origins can be channelized and will access the freeway bottleneck in different time periods, resulting in less total cost for the system compared to the no-metering case. The metering strategies are Pareto-improving, with travelers from the on-ramp with the highest priority having the smallest individual costs and travelers from the on-ramp with the lowest priority having their costs equal to those in the no-metering scenario. By changing the priority order of the ramps periodically, the benefit of the Pareto-improving metering strategies can be distributed evenly among all travelers. Numerical experiments show that the total user cost can be reduced by up to 40% with the proposed metering strategies. This study offers researchers and policy makers a different angle of looking at congestion externality, and the results provide an overview of the potential long term benefits that dynamic ramp metering strategies can achieve.  相似文献   

20.

This paper develops an analytic approach for measuring the effect of vehicle scheduling and of metering methods required to balance entrance rates among stations on lane capacity utilization of automated automobile guideways. The scheduling process at each entrance is represented by a probabilistic model which generates a system of nonlinear equations. The solution of this system yields the maximum steady state input rates at the entrances to the guideway system. The method developed is applicable to network configurations in which a small number of merges must be scheduled for each vehicle before it enters the guideway. It is demonstrated by application to a corridor guideway serving a major activity center during peak inbound demand, and also it is shown how the approach may be extended to more complex networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号