首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parking problem becomes one of major issues in the city transportation management since the spatial resource of a city is limited and the parking cost is expensive. Lots of cars on the road should spend unnecessary time and consume energy during searching for parking due to limited parking space. To cope with these limitations and give more intelligent solutions to drivers in the selection of parking facility, this study proposes a smart parking guidance algorithm. The proposed algorithm supports drivers to find the most appropriate parking facility considering real-time status of parking facilities in a city. To suggest the most suitable parking facility, several factors such as driving distance to the guided parking facility, walking distance from the guided parking facility to destination, expected parking cost, and traffic congestion due to parking guidance, are considered in the proposed algorithm. To evaluate the effectiveness of the proposed algorithm, simulation tests have been carried out. The proposed algorithm helps to maximize the utilization of space resources of a city, and reduce unnecessary energy consumption and CO2 emission of wandering cars since it is designed to control the utilization of parking facility efficiently and reduce traffic congestion due to parking space search.  相似文献   

2.
A multi‐objective, time‐staged network‐design problem is formulated. Through transformation, the problem is decomposed into a set of single‐period, single‐objective problems. Lexicographic ordering is instrumental in effecting this transformation; it also allows a backward‐recursion algorithm to be applied using strong pruning criteria. Furthermore, monotonicity properties enable us to solve the problem using the familiar tree‐search algorithms. The solution method has several desirable properties — as shown by an example and a case study of Tripoli Province, Libya. First, the algorithm ensures continuity of project implementation over the multi time‐periods and provides optimality in later computational stages irrespective of the decision at an interim stage. Second, the algorithm tends to provide accessibility to unconnected regions in the study area at low user‐cost without employing weights to the two objective functions of accessibility and user‐cost efficiency. Such a property is deemed advantageous for suggesting transportation investments based purely on purchasing the greatest benefit for each dollar, with political neutrality strictly maintained.  相似文献   

3.
Intra‐city commuting is being revolutionized by call‐taxi services in many developing countries such as India. A customer requests a taxi via phone, and it arrives at the right time and at the right location for the pick‐up. This mode of intra‐city travel has become one of the most reliable and convenient modes of transportation for customers traveling for business and non‐business purposes. The increased number of vehicles on city roads and raising fuel costs has prompted a new type of transportation logistics problem of finding a fuel‐efficient and quickest path for a call‐taxi through a city road network, where the travel times are stochastic. The stochastic travel time of the road network is induced by obstacles such as the traffic signals and intersections. The delay and additional fuel consumption at each of these obstacles are calculated that are later imputed to the total travel time and fuel consumption of a path. A Monte‐Carlo simulation‐based approach is proposed to identify unique fuel‐efficient paths between two locations in a city road network where each obstacle has a delay distribution. A multi‐criteria score is then assigned to each unique path based on the probability that the path is fuel efficient, the average travel time of the path and the coefficient of variation of the travel times of the path. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Traffic signal timings in a road network can not only affect total user travel time and total amount of traffic emissions in the network but also create an inequity problem in terms of the change in travel costs of users traveling between different locations. This paper proposes a multi‐objective bi‐level programming model for design of sustainable and equitable traffic signal timings for a congested signal‐controlled road network. The upper level of the proposed model is a multi‐objective programming problem with an equity constraint that maximizes the reserve capacity of the network and minimizes the total amount of traffic emissions. The lower level is a deterministic network user equilibrium problem that considers the vehicle delays at signalized intersections of the network. To solve the proposed model, an approach for normalizing incommensurable objective functions is presented, and a heuristic solution algorithm that combines a penalty function approach and a simulated annealing method is developed. Two numerical examples are presented to show the effects of reserve capacity improvement and green time proportion on network flow distribution and transportation system performance and the importance of incorporating environmental and equity objectives in the traffic signal timing problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Frequency setting takes place at the strategic and tactical planning stages of public transportation systems. The problem consists in determining the time interval between subsequent vehicles for a given set of lines, taking into account interests of users and operators. The result of this stage is considered as input at the operational level. In general, the problem faced by planners is how to distribute a given fleet of buses among a set of given lines. The corresponding decisions determine the frequency of each line, which impacts directly on the waiting time of the users and operator costs. In this work, we consider frequency setting as the problem of minimizing simultaneously users' total travel time and fleet size, which represents the interest of operators. There is a trade‐off between these two measures; therefore, we face a multi‐objective problem. We extend an existing single‐objective formulation to account explicitly for this trade‐off, and propose a Tabu Search solving method to handle efficiently this multi‐objective variant of the problem. The proposed methodology is then applied to a real medium‐sized problem instance, using data of Puerto Montt, Chile. We consider two data sets corresponding to morning‐peak and off‐peak periods. The results obtained show that the proposed methodology is able to improve the current solution in terms of total travel time and fleet size. In addition, the proposed method is able to efficiently suggest (in computational terms) different trade‐off solutions regarding the conflicting objectives of users and operators. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Jiang et al. (Jiang, Y.Q., Wong, S.C., Ho, H.W., Zhang, P., Liu, R.X., Sumalee, A., 2011. A dynamic traffic assignment model for a continuum transportation system. Transportation Research Part B 45 (2), 343–363) proposed a predictive continuum dynamic user-optimaDUO-l to investigate the dynamic characteristics of traffic flow and the corresponding route-choice behavior of travelers. Their modeled region is a dense urban city that is arbitrary in shape and has a single central business district (CBD). However, we argue that the model is not well posed due to an inconsistency in the route-choice strategy under certain conditions. To overcome this inconsistency, we revisit the PDUO-C problem, and construct an improved path-choice strategy. The improved model consists of a conservation law to govern the density, in which the flow direction is determined by the improved path-choice strategy, and a Hamilton–Jacobi equation to compute the total travel cost. The simultaneous satisfaction of both equations can be treated as a fixed-point problem. A self-adaptive method of successive averages (MSA) is proposed to solve this fixed-point problem. This method can automatically determine the optimal MSA step size using the least squares approach. Numerical examples are used to demonstrate the effectiveness of the model and the solution algorithm.  相似文献   

7.
Establishment of industry facilities often induces heavy vehicle traffic that exacerbates congestion and pavement deterioration in the neighboring highway network. While planning facility locations and land use developments, it is important to take into account the routing of freight vehicles, the impact on public traffic, as well as the planning of pavement rehabilitation. This paper presents an integrated facility location model that simultaneously considers traffic routing under congestion and pavement rehabilitation under deterioration. The objective is to minimize the total cost due to facility investment, transportation cost including traffic delay, and pavement life-cycle costs. Building upon analytical results on optimal pavement rehabilitation, the problem is formulated into a bi-level mixed-integer non-linear program (MINLP), with facility location, freight shipment routing and pavement rehabilitation decisions in the upper level and traffic equilibrium in the lower level. This problem is then reformulated into an equivalent single-level MINLP based on Karush–Kuhn–Tucker (KKT) conditions and approximation by piece-wise linear functions. Numerical experiments on hypothetical and empirical network examples are conducted to show performance of the proposed algorithm and to draw managerial insights.  相似文献   

8.
It is important and also challenging to plan airport facilities to meet future traffic needs in a rapidly changing environment, which is characterized by various uncertainties. One key issue in airport facility development is that facility performance functions (delay levels as functions of capacity utilization rates) are nonlinear, which complicates the solution method design. Potential demand fluctuations in a deregulated aviation market add another dimension to the decision making process. To solve this problem, a deterministic total cost minimization model is proposed and then extended into stochastic programs, by including uncertainties in traffic forecasts. After the exploration of properties of the delay cost function, an Outer-Approximation (OA) technique which is superior to the existing discrete approximation is designed. After model enhancements, an efficient solution framework based on the OA technique is used to solve the model to its global optimality by interactively generating upper and lower bounds to the objective. Computational tests demonstrate the validity of developed models and efficiency of proposed algorithms. The total cost is reduced by 18.8% with the stochastic program in the numerical example.  相似文献   

9.
As a multi‐criteria decision‐making (MCDM) method, the analytic hierarchy process (AHP) has been used considerably to solve hierarchical or network‐based decision problems in socio‐economic fields. Following an in‐depth explanation of the transport function in logistics and an overview of the MCDM methods, the AHP model is employed in the paper for a logistics company in selecting the most suitable way of transportation between two given locations in Turkey. The criteria used in the selection of transportation modes are identified as the cost, speed, safety, accessibility, reliability, environmental friendliness, and flexibility. Several cost parameters (transportation, storage, handling, bosphorus crossover) are incorporated into the decision‐making process. The application is carried out in instructional character. The results of the study indicate that the railway transportation, which is not widely used in Turkey, is also an alternative and suitable means of transportation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Incorporation of externalities in the Multi-Objective Network Design Problem (MO NDP) as objectives is an important step in designing sustainable networks. In this research the problem is defined as a bi-level optimization problem in which minimizing externalities are the objectives and link types which are associated with certain link characteristics are the discrete decision variables. Two distinct solution approaches for this multi-objective optimization problem are compared. The first heuristic is the non-dominated sorting genetic algorithm II (NSGA-II) and the second heuristic is the dominance based multi objective simulated annealing (DBMO-SA). Both heuristics have been applied on a small hypothetical test network as well as a realistic case of the city of Almelo in the Netherlands. The results show that both heuristics are capable of solving the MO NDP. However, the NSGA-II outperforms DBMO-SA, because it is more efficient in finding more non-dominated optimal solutions within the same computation time and maximum number of assessed solutions.  相似文献   

12.
We present a quadratic programming framework to address the problem of finding optimal maintenance policies for multifacility transportation systems. The proposed model provides a computationally-appealing framework to support decision making, while accounting for functional interdependencies that link the facilities that comprise these systems. In particular, the formulation explicitly captures the bidirectional relationship between demand and deterioration. That is, the state of a facility, i.e., its condition or capacity, impacts the demand/traffic; while simultaneously, demand determines a facility’s deterioration rate. The elements that comprise transportation systems are linked because the state of a facility can impact demand at other facilities. We provide a series of numerical examples to illustrate the advantages of the proposed framework. Specifically, we analyze simple network topologies and traffic patterns where it is optimal to coordinate (synchronize or alternate) interventions for clusters of facilities in transportation systems.  相似文献   

13.
The task of predicting the short run equilibrium of a transportation market is central to the study of many transportation problems. In this paper we review the different approaches and methodologies that have been proposed to deal with the equilibrium problem in transportation markets. The problem is formulated in the most general way possible and its fundamental characteristics are analyzed. Then, different mathematical characterizations of transportation market and traffic flow equilibrium in networks are reviewed. Various available results are presented and analyzed. Finally, a discussion is given of alternative computational procedures for dealing with multiclass problems.  相似文献   

14.
In this paper we formulate the dynamic user equilibrium problem with an embedded cell transmission model on a network with a single OD pair, multiple parallel paths, multiple user classes with elastic demand. The formulation is based on ideas from complementarity theory. The travel time is estimated based on two methods which have different transportation applications: (1) maximum travel time and (2) average travel time. These travel time functions result in linear and non-linear complementarity formulations respectively. Solution existence and the properties of the formulations are rigorously analyzed. Extensive computational experiments are conducted to demonstrate the benefits of the proposed formulations on various test networks.  相似文献   

15.
In order to understand the mode shift behavior of car travelers and relieve traffic congestion, a Stated Preference survey has been conducted in the city of Ji'nan in China to analyze bus choice behavior and the heterogeneity of car travelers. Several discrete choice models, including multinomial logit, mixed logit and latent class model (LCM) are developed based on these survey data. A comparative analysis indicates that the LCM has the highest precision and is more suitable to analyze the heterogeneity of car travelers. The LCM divides car travelers into three classes. Different classes have different sets of influencing factors in the model. Policy recommendations are also proposed for those classes to promote bus shift from car travelers based on the model results. Finally, sensitivity analysis on parking fees and fuel cost is carried out on the LCMs under different bus service levels. Car travelers have different sensitivities to the influencing factors. The conclusions indicate that the LCM can reflect the heterogeneity and preferences of car travelers and can be used to understand how to shift the behavior of car travelers and make more effective traffic policy.  相似文献   

16.
The available highway alignment optimization algorithms use the total cost as the objective function. This is a single objective optimization process. In this process, travel‐time, vehicle operation accident earthwork land acquisition and pavement construction costs are the basic components of the total cost. This single objective highway alignment optimization process has limited capability in handling the cost components separately. Moreover, this process cannot yield a set of alternative solutions from a single run. This paper presents a multi‐objective approach to overcome these shortcomings. Some of the cost components of highway alignments are conflicting in nature. Minimizing some of them will yield a straighter alignment; whereas, minimizing others would make the alignment circuitous. Therefore, the goal of the multiobjective optimization approach is to handle the trade‐off amongst the highway alignment design objectives and present a set of near optimal solutions. The highway alignment objectives, i.e., cost functions, are not continuous in nature. Hence, a special genetic algorithm based multi‐objective optimization algorithm is suggested The proposed methodology is demonstrated via a case study at the end.  相似文献   

17.
A major problem addressed during the preparation of spatial development plans relates to the accessibility to facilities where services of general interest such as education, health care, public safety, and justice are offered to the population. In this context, planners typically aim at redefining the level of hierarchy to assign to the urban centers of the region under study (with a class of facilities associated with each level of hierarchy) and redesigning the region’s transportation network. Traditionally, these two subjects – urban hierarchy and transportation network planning – have been addressed separately in the scientific literature. This paper presents an optimization model that simultaneously determines which urban centers and which network links should be promoted to a new level of hierarchy so as to maximize accessibility to all classes of facilities. The possible usefulness of the model for solving real-world problems of integrated urban hierarchy and transportation network planning is illustrated through an application to the Centro Region of Portugal.  相似文献   

18.
In this study, we allow using alternative transportation modes and different types of vehicles in the hub networks to be designed. The aim of the problem is to determine the locations and capacities of hubs, which transportation modes to serve at hubs, allocation of non-hub nodes to hubs, and the number of vehicles of each type to operate on the hub network to route the demand between origin-destination pairs with minimum total cost. Total cost includes fixed costs of establishing hubs with different capacities, purchasing and operational costs of vehicles, transportation costs, and material handling costs. A mixed-integer programming model is developed and a variable neighborhood search algorithm is proposed for the solution of this problem. The heuristic algorithm is tested on instances from the Turkish network and CAB data set. Extensive computational analyzes are conducted in order to observe the effects of changes in various problem parameters on the resulting hub networks.  相似文献   

19.
This paper introduces a Multiobjective Hierarchical Model (MOHLM) for locating public facilities on a transportation network. The proposed model combines the multiobjective nature of the location-allocation problem with the hierarchical character of some public service systems, such as health care delivery. The model examines both maximum and total weighted travel time, facility utilization, and total travel time from the master facility to the attached subordinate facilities. An iterative goal programing algorithm is used to solve the problem. An example related to the location of health care facilities in a rural area of Greece is used to illustrate the application of the proposed model.  相似文献   

20.
This paper investigates a facility location model that considers the disruptions of facilities and the cost savings from the inventory risk-pooling effect and economies of scale. Facilities may have heterogeneous disruption probabilities. When a facility fails, its customers may be reassigned to other surviving ones to hedge against lost-sales costs. We first develop both an exact and an approximate expression for the nonlinear inventory cost, and then formulate the problem as a nonlinear integer programming model. The objective is to minimize the expected total cost across all possible facility failure scenarios. To solve this problem, we design two methods, an exact approach using special ordered sets of type two (SOS2) and a heuristic based on Lagrangian relaxation. We test the model and algorithms on data sets with up to 150 nodes. Computational results show that the proposed algorithms can solve the problem efficiently in reasonable time. Managerial insights on the optimal facility deployment, customer assignments and inventory control strategies are also drawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号