首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, as the composite laminated plates are widely used in engineering practice such as aerospace, marine and building engineering, the vibration problem of the composite laminated plates is becoming more and more important. Frequency, especially the fundamental frequency, has been considered as an important factor in vibration problem. In this paper, a calculation method of the fundamental frequency of arbitrary laminated plates under various boundary conditions is proposed. The vibration differential equation of the laminated plates is established at the beginning of this paper and the frequency formulae of specialty orthotropic laminated plates under various boundary conditions and antisymmetric angle-ply laminated plates with simply-supported edges are investigated. They are proved to be correct. Simple algorithm of the fundamental frequency for multilayer antisymmetric and arbitrary laminated plates under various boundary conditions is studied by a series of typical examples. From the perspective of coupling, when the number of laminated plates layers N 8–10, some coupling influence on the fundamental frequency can be neglected. It is reasonable to use specialty orthotropic laminated plates with the same thickness but less layers to calculate the corresponding fundamental frequency of laminated plates. Several examples are conducted to prove correctness of this conclusion. At the end of this paper, the influence of the selected number of layers of specialty orthotropic laminates on the fundamental frequency is investigated. The accuracy and complexity are determined by the number of layers. It is necessary to use proper number of layers of special orthotropic laminates with the same thickness to simulate the fundamental frequency in different boundary conditions.  相似文献   

2.
Using the supercavitation phenomenon is necessary to reach high velocities underwater. Supercavitation can be achieved in two ways: natural and artificial. In this article, the simulation of flows around a torpedo was studied naturally and artificially. The validity of simulation using theoretical and practical data in the natural and artificial phases was evaluated. Results showed that the simulations were consistent with the laboratory results. The results in different injection coefficient rates, injection angles, andcavitation numbers were studied. The obtained results showed the importance of cavitation number, injection rate coefficient, and injection angle in cavity shape. At the final level, determining the performance conditions using the Design of Experiment(DOE) method was emphasized, and the performance of cavitation number, injection rate coefficient, and injection angle in drag and lift coefficient was studied. The increase in injection angle in the low injection rate coefficient resulted in a diminished drag coefficient and that in the high injection rate coefficient resulted in an enhanced drag coefficient.  相似文献   

3.
In this paper an analytical solution for the stability of the fully developed flow drive in a magneto-hydro-dynamic pump with pulsating transverse Eletro-magnetic fields is presented. To do this, a theoretical model of the flow is developed and the analytical results are obtained for both the cylindrical and Cartesian configurations that are proper to use in the propulsion of marine vessels. The governing parabolic momentum PDEs are transformed into an ordinary differential equation using approximate velocity distribution. The numerical results are obtained and asymptotic analyses are built to discover the mathematical behavior of the solutions. The maximum velocity in a magneto-hydro-dynamic pump versus time for various values of the Stuart number, electro-magnetic interaction number, Reynolds number, aspect ratio, as well as the magnetic and electrical angular frequency and the shift of the phase angle is presented. Results show that for a high Stuart number there is a frequency limit for stability of the fluid flow in a certain direction of the flow. This stability frequency is dependent on the geometric parameters of a channel.  相似文献   

4.
The aim of the present work is to assess the offshore wave energy potential along the Atlantic coast of Morocco. Research works of this paper focus on the identification of the most energetic sites for wave energy converters(WECs) deployment. For this purpose, 11 sites have been explored; all of them are located at more than 40 m depth on the Moroccan Atlantic coast. The wave power at each site is computed on the basis of wave data records in terms of significant wave height and energy period provided by the Wave Watch three(WW3) model. Results indicate that the coast sites located between latitudes 30° 30′ N and 33° N are the most energetic with an annual average wave power estimated at about 30 kW· m~(-1), whereas, in the other sites, the wave power is significantly lower. Moreover, the study of the monthly and seasonal temporal variability is found to be uniform in the powerful sites with values four times greater in winter than in summer. The directional investigation on the significant wave height has shown that for almost all the powerful sites, the incoming waves have a dominant sector ranging between Northern(N) and Western-Northern-Western(WNW) directions.  相似文献   

5.
Structural integrity has remained a challenge for design and analysis of wave energy devices. A difficulty in assessment of the structural integrity is often laid in the accurate determination of the wave-induced loads on the wave energy devices and the repones of the structure. Decoupled hydroelastic response of a submerged, oscillating wave energy device to extreme nonlinear wave loads is studied here. The submerged wave energy device consists of an oscillating horizontal disc attached to a direct-drive power take-off system. The structural frame of the wave energy device is fixed on the seafloor in shallow water. Several extreme wave conditions are considered in this study. The nonlinear wave loads on members of the submerged structure are obtained by use of the level I Green-Naghdi equations and Morison's equation for cylindrical members.Distribution of Von Mises stresses and the elastic response of the structure to the extreme wave loads are determined by use of a finite element method. The decoupled hydroelastic analysis of the structure is carried out for devices built by four different materials, namely stainless steel, concrete, aluminium alloy, and titanium alloy. The elastic response of these devices is studied and results are compared with each other. Points of maximum stress and deformations are determined and the structural integrity under the extreme conditions is assessed. It is shown that the proposed approaches provide invaluable information about the structural integrity of wave energy devices.  相似文献   

6.
文章对一个理论畸形波序列进行了数值模拟并且将数值结果与理论值做了对比。采用速度入口方法以实现波浪模拟。在造波边界处不考虑高阶波浪成分,只输入线性波浪速度。分别采用三种不同分辨率的网格进行数值模拟,以找到足够有效捕捉自由面的网格模型。考虑到快速傅里叶变换不能反映畸形波的时频特征,因而引入小波变换研究畸形波传播过程中的能量变化。最后比较了北海实测畸形波和文中理论畸形波小波变换的差异。  相似文献   

7.
To facilitate the commercialization of wave energy in an array or farm environment, effective control strategies for improving energy extraction efficiency of the system are important. In this paper, we develop and apply model-predictive control(MPC) to a heaving point-absorber array, where the optimization problem is cast into a convex quadratic programming(QP)formulation,which can be efficiently solved by a standard QP solver. We introduced a term for penalizing large slew rates in the cost function to ensure the convexity of this function. Constraints on both range of the states and the input capacity can be accommodated. The convex formulation reduces the computational hurdles imposed on conventional nonlinear MPC. For illustration of the control principles,a point-absorber approximation is adopted to simplify the representation of the hydrodynamic coefficients among the array by exploiting the small devices to wavelength assumption. The energycapturing capabilities of a two-cylinder array in regular and irregular waves are investigated. The performance of the MPC for this two-WEC array is compared to that for a single WEC, and the behavior of the individual devices in head or beam wave configuration is explained. Also shown is the reactive power required by the power takeoff system to achieve the performance.  相似文献   

8.
S aint Martin Island is the only coral island and one of the well-known tourist spots in Bangladesh.Because of its geographic location,electricity cannot be supplied from the mainland through the electricity grid.Diesel generators and solar power are the only means of electricity generation presently available there.Surrounded by the sea,Saint Martin Island has the ideal conditions for wave energy extraction.In this research,numerical models have been developed using the Delft3 D simulation software to determine the wave characteristics of different locations around Saint Martin Island.The results have been calibrated and validated against the data obtained from well-known data sources.The wave power densities have been calculated using the data obtained from the simulation models.The findings of the research show that the wave power density increases significantly from shallow water to deep water and a large amount of wave energy can be extracted during the summer and rainy monsoon seasons.The maximum hourly average value of wave power in 2016 has been determined to be6.90 kW/m at location with a water depth of 27.80 m.Wave energy resources are also observed to be sufficiently stable with the coefficients of variation of wave power density less than 0.62,except for December,January,and May of that particular year.Moreover,the annual effective energies have been determined to be within the range of 36.57 to 57.28 MWh/m,which will be sufficient to meet the electricity requirement of the island communities.  相似文献   

9.
Wave energy from the ocean is currently a very popular renewable energy, and its development has primarily focused on the shape of the wave energy converter(WEC) used to efficiently convert wave energy into electrical energy. However, the free surface ocean wave problem is very complex and the parameters affecting WEC behavior are difficult to understand. In this paper, based on the Lattice-Boltzmann method, we present particle-based CFD simulation results for the pivoted-type WEC that exhibits both vertical and horizontal motions. In this method, the computation domain need not be a mesh and complex geometry is not a limiting factor. Using a free-surface turbulence model, we simulated the fluid-structure interaction. We detail our simulation results, which show good agreement with those in the literature.  相似文献   

10.
为确保带减速齿轮箱主推进系统的可靠性,文章对船舶轴系的扭转振动进行了研究。首先根据各组成部件的特点将轴系分解为连续和离散的两个子系统,分别利用波分析法和多自由度系统分析法列出连续子系统的波动形式及离散子系统的振动微分方程,同时考虑了减速齿轮箱油膜刚度的影响。然后根据两子系统连接处的动态平衡和连续条件,建立整个轴系在扭转振动模式下总运动方程,通过求解总方程得到系统的位移响应。该扭转振动分析被应用到某LNG船带减速齿轮箱的轴系振动计算中,通过考虑轴系减速齿轮箱啮合齿面间油膜刚度使轴系扭转振动模型更接近轴系实际运转工况。计算结果显示:随着减速齿轮箱啮合齿面间油膜刚度的增加,最大轴系扭转应力向低转速区域偏移。这对船舶轴系转速禁区的划分产生极大的影响。有助于防止因不良轴系振动计算引起轴系事故的发生。  相似文献   

11.
The objective of this paper is to introduce an appropriate unidirectional wave spectrum model for the Strait of Hormuz. The research is focused on assessing performance of standard wave spectrum models in the region. By evaluating such models based on valuable measurement data recently published, the calibration procedure has been conducted on such standard models to reach a better concordance between a modified standard spectral model and observed field spectra. The calibration is performed initially with respect to four distinct directions related to four available measurement stations. So, it results in four sets of coefficients for a nominated model. Next, it is continued to reach just one model insensitive to directions. Results clearly showed that the International Towing Tank Conference(ITTC) model is more appropriate than Joint North Sea Wave Project(JONSWAP) and Pierson and Moskowitz(PM) models in this area, even without any calibration. However, modifications have been successful on improving the conformity of the model.  相似文献   

12.
In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber(FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter's efficiency when considering specific conditions.  相似文献   

13.
文章采用数值模拟方法,建立了基于FLUENT软件的二维不规则波浪数值模型,探讨了波浪对水平板结构的作用机理。模型中采用RANS方程和标准k-ε方程,采用VOF方法重建自由液面。通过数值模拟复演了波浪冲击水平板结构的过程,将数值模拟结果与实验数据进行比较,验证了模型的可靠性。经过计算和分析,研究了波浪冲击平板过程中的冲击压力和流场特性,得到了冲击压力和流场的分布规律。分析了波陡,净空及板宽等参数对冲击压力和流场的影响。最后,给出了波浪冲击压力与相应水质点垂直速度间的统计关系,并对河海大学原有冲击压力的计算公式进行了改进,提出了新的冲击压力公式。研究结果表明:冲击压力峰值与相应的水质点垂直速度的平方成正比,修正后的冲击压力公式更为合理、可行。论文工作将对准确预测冲击载荷,掌握更多的冲击机理具有重要意义。  相似文献   

14.
管道系统在船舶行业中应用广泛,其振动及声辐射特性一直以来都是研究的热点。基于Timoshenko梁理论,本文首先利用传递矩阵法计算了单根充液管道的横向振动响应,并通过有限元计算和实验对比验证了计算方法。在此基础上,对管道系统的传递矩阵取特征值得到波传播参数,从而进一步分析了周期支撑的充液管道系统的振动波传递特性。由本文的计算结果可见,基于Timoshenko梁理论的横向振动响应比基于Euler-Bernoulli梁理论的结果更为精准,尤其是在较高频域内。此外,弹性支撑的刚度和间距会影响波阻和波传播带。本文工作将为周期支撑管系的减振提供一定的技术参考。  相似文献   

15.
以三类内孤立波理论(KdV、eKdV和MCC)的适用性条件为依据,将内孤立波诱导上下层深度平均水平速度作为入口条件,采用Navier-Stokes方程为流场控制方程,建立了两层流体中内孤立波对直立圆柱体强非线性作用的数值模拟方法。结果表明,数值模拟所得内孤立波波形及其振幅与相应理论和实验结果一致,并且直立圆柱体内孤立波水平力、垂向力及其力矩数值模拟结果与实验结果吻合。直立圆柱体内孤立波载荷由波浪压差力、粘性压差力和摩擦力构成,其中摩擦力很小,可以忽略;对于水平力,其波浪压差力与粘性压差力量级相当,流体粘性的影响显著;对于垂向力,粘性压差力很小,流体粘性影响可以忽略。此外,直立圆柱体对内孤立波的波形及其诱导流场的影响很小,因此采用Morison公式和傅汝德—克雷洛夫力分别计算其内孤立波水平力和垂向力是可行的。  相似文献   

16.
本文首次提出一个新颖的转换线性模拟法用于预报发生在双峰交叉海况下的波峰幅值分布和畸形波。为执行所提出的转换线性模拟法,建立了一个表达为单调指数函数的转化模型,以便原始真实过程的前三阶矩与转化后模型对应的各阶矩相一致。应用所提出的新颖模拟法预报了发生在两个双峰交叉海况下的畸形波,一个带基于由良港海岸测得的表面高程数据的方向谱,另一个带典型的双峰Ochi-Hubble方向波浪谱。结果显示:在这两种情况下所提出的新颖的转换线性模拟法比传统的线性模拟法或用其它理论(或经验)模型能提供更精确的预报结果;所提出的新颖的转换线性模拟法比非线性模拟法效率更高。  相似文献   

17.
This paper presents an analytical scheme for predicting the collapse strength of a flexible pipe, which considers the structural interaction between relevant layers. The analytical results were compared with a FEA model and a number of test data, and showed reasonably good agreement. The theoretical analysis showed that the pressure armor layer enhanced the strength of the carcass against buckling, though the barrier weakened this effect. The collapse strength of pipe was influenced by many factors such as the inner radius of the pipe, the thickness of the layers and the mechanical properties of the materials. For example, an increase in the thickness of the barrier will increase contact pressure and in turn reduce the critical pressure.  相似文献   

18.
本文采用计算机数值模拟方法,在FLUENT软件计算平台上建立了二维不规则波数值波浪水槽,对透空平板结构底面受到的波浪缓变压力作用进行了研究。数学模型采用RANS方程和k-ε湍流模型,以VOF方法处理自由表面。首先对几组典型工况进行了模拟,复演了波浪冲击透空平板结构的过程,采用低通滤波器方法提取上托力信号的缓变部分,通过数值模拟和试验结果的比较,验证了模型的有效性。然后通过计算和分析,得到了波浪冲击过程中缓变压强的变化特性,不同有效波高、超高、平均周期下缓变压强的分布规律,波陡、超高和板宽各因素对缓变压强的影响。最后给出了计算缓变压强分布宽度的公式,认为分布宽度与波浪作用在板上的宽度x、相对超高和相对板宽等因素相关。另外,根据模拟结果,文中提出了缓变压强的拟合公式,与河海大学原经验公式进行了比较,认为原公式计算结果偏小,并不完全适用,新公式更加合理可行。研究结果有利于更准确地预报波浪的缓变压强荷载,深入认识波浪作用机理。  相似文献   

19.
海洋结构物的水动力性能研究对于安全、经济的工程设计至关重要。近年来,由海浪巨大波浪引起的事故越来越多地见诸报道,因此,有必要深入研究波浪尤其是畸形波对结构物产生的载荷及运动响应。海上浮式平台的运动响应与系泊载荷密切相关,而文中的出发点正是研究在何种波浪条件下会引起平台的最大运动响应。通过对一座设计作业水深为500 m的半潜式平台进行频域计算,获得了平台在自由漂浮状态下的响应函数(RAO),并与实验数据进行了比较。通过时域模拟,获得了新年波和三姐妹波作用下的平台运动响应,研究了畸形波的存在对于平台运动的影响。此外,还研究了畸形波中最大波峰值及连续大波的出现间隔对平台垂荡和纵摇运动的影响,可为后续研究和工程设计提供参考。  相似文献   

20.
The integration of wave energy converters(WECs) with floating breakwaters has become common recently due to the benefits of both cost-sharing and providing offshore power supply. In this study, based on viscous computational fluid dynamics(CFD) theory, we investigated the hydrodynamic performances of the floating box and Berkeley Wedge breakwaters, both of which can also serve as WECs. A numerical wave flume model is constructed using Star-CCM+software and applied to investigate the interaction between waves and wave energy converters while completing the verification of the convergence study of time and space steps. The effects of wave length on motion response and transmission coefficient of the floating box breakwater model are studied. Comparisons of our numerical results and published experimental data indicate that Star-CCM+ is very capable of accurately modeling the nonlinear wave interaction of floating structures, while the analytical potential theory overrates the results especially around the resonant frequency. Optimal damping can be readily predicted using potential flow theory and can then be verified by CFD numerical results. Next, we investigated the relationship between wave frequencies and various coefficients using the CFD model under optimal damping, including the motion response, transmission coefficient, reflection coefficient,dissipation coefficient, and wave energy conversion efficiency. We then compared the power generation efficiencies and wave dissipation performances of the floating box and Berkeley Wedge breakwaters. The results show that the power generation efficiency of the Berkeley Wedge breakwater is always much higher than that of the floating box breakwater. Besides, the wave dissipation performance of the Berkeley Wedge breakwater is much better than that of the floating box breakwater at lower frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号