首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
降低电机噪声的方法研究   总被引:3,自引:0,他引:3  
刘鸣  景建方 《船电技术》2011,31(12):21-24
介绍了电机产生电磁噪声、机械噪声和空气动力学噪声的原因,对电磁噪声、机械噪声和空气动力学噪声进行分析,找出引起噪声的根源以及减少电机噪声的方法。  相似文献   

2.
基于统计能量方法研究主机排放噪声对船舶舱室噪声的影响规律。建立某船舱室噪声预报模型,分析是否考虑主机排放噪声时舱室噪声水平,探究是否需要考虑主机排放噪声对舱室噪声影响。研究表明,考虑主机排放噪声的舱室噪声计算结果更接近测试值,且主机排放噪声是距主机舱较近舱室噪声的重要成分,对于居住室、医护室等对噪声要求较高的舱室应考虑主机排放噪声的影响。  相似文献   

3.
对于进出口管道开口的大型船用离心风机,其内部非定常流动诱发的噪声是气动噪声和振动噪声的耦合且噪声以基频为主。本文通过数值计算方法定量研究了风机最高效率点(BEP)的基频噪声辐射,包含叶轮气动噪声、壳体气动噪声和壳体振动噪声。基于声学有限元方法,利用FW-H方程耦合URANS流场计算结果数值计算了离心风机的噪声辐射;以流动诱发壳体振动的压力脉动为噪声激励源,基于声学有限元方法,计算了壳体振动噪声辐射。结果表明,壳体基频气动噪声是风机噪声的主要贡献量(87 dB),其次是叶轮基频气动噪声(71dB),壳体基频振动噪声最小(57 dB)。噪声叠加使总噪声辐射增加了0.9 dB,但是声场的指向性没有发生变化。  相似文献   

4.
自适应神经网络模糊技术的噪声抵消方法   总被引:1,自引:0,他引:1  
利用自适应神经网络模糊推断系统可以抑制噪声,即从信号和噪声混合中提取信号,这种方法适用于有参考噪声的情况。正好适用于水动力噪声试验设备,其中北景噪声强,而且可以得到比较纯净的背影噪声作为参考噪声。这里给出了噪声信号在背景噪声信号的模拟例子。  相似文献   

5.
针对传统噪声抑制方法内噪声抑制函数存在不连续性,导致最终可抑制的噪声数值较小,设计小波分析的舰船动力机械噪声抑制方法。将周期性的振幅调制处理为一个随机变量,提取舰船机械噪声特征信息。采用非似然估量处理方法定义阈值中的元素,利用小波分析设定噪声阈值。构建动力机械噪声平衡数值关系,最终实现对舰船动力机械噪声的抑制。准备已知参数的舰船动力机械后,连接数据采集设备,采用2种传统噪声抑制方法与所设计的噪声抑制方法进行对比实验。结果表明,所设计的噪声抑制方法可抑制的噪声数值为50 dB,实际可抑制的噪声数值最大。  相似文献   

6.
降低离心泵噪声是一个重要的研究方向。本文对离心泵噪声来源进行了分类评述离心泵噪声主要分为机械噪声和流噪声,着重介绍离心泵流噪声及离心泵系统噪声的研究现状,阐述根据噪声特性开展的延伸应用,以及离心泵研究的发展趋势和热点。离心泵噪声的深入研究,将推动整个泵行业及相关应用行业向更高层次发展。  相似文献   

7.
近年来,水下航行器的声隐蔽性受到广泛关注,而有关其水动力噪声的研究却较少。将水动力噪声分为壳体流噪声、壳体流激振动噪声、螺旋桨流噪声和螺旋桨流激振动噪声4类,采用大涡模拟(LES)结合Light-hill声类比混合计算方法,对水下航行器的水动力噪声进行分离预报。首先,采用已有文献数据验证该混合声学计算方法的有效性。随后,对水下航行器壳体和螺旋桨三维流场的流噪声和流激振动噪声进行数值模拟和分析。结果表明,4类噪声均与速度呈非线性关系。在上游段,螺旋桨流激振动噪声为主要噪声;在下游段,壳体流噪声所占比例最大。在低速时,由壳体激发的水动力噪声是主要噪声;随着航速的增大,由螺旋桨激发的水动力噪声占总噪声的比例逐渐增加;总体水动力噪声能量随航速的增大而增大。  相似文献   

8.
潜艇噪声与综合降噪技术的应用   总被引:1,自引:0,他引:1  
介绍潜艇噪声的危害和来源,阐述降低潜艇的机械噪声、螺旋桨噪声、水动力噪声等三个主要噪声的技术措施。  相似文献   

9.
舰船的低频噪声主要来源于机械噪声和螺旋桨噪声,噪声会大大降低舰船和螺旋桨的隐蔽特性,降低作战能力,因此,有必要针对舰船和潜艇的低频噪声声场进行研究与分析,实现降噪、抑制噪声的目的。本文在进行舰船低频噪声声场仿真分析时,采用应用范围非常广的Sysnoise软件,通过建立舰船噪声声场的有限元模型、边界条件、声场特征参数等,完成舰船低频噪声的仿真。  相似文献   

10.
当前舰船辐射噪声识别方法存在识别率低,对环境鲁棒性差等缺陷,为了对复杂环境下的舰船辐射噪声识别进行准确识别,提出了BP神经网络的舰船辐射噪声识别方法。首先采集舰船辐射噪声,并提取舰船辐射噪声识别有效特征参数,然后采用BP神经网络建立舰船辐射噪声识别模型,从而实现对舰船辐射噪声信号的分类和识别,最后进行舰船辐射噪声识别的仿真测试。结果表明,相对于已有的舰船辐射噪声识别方法,BP神经网络提高了舰船辐射噪声识别率,可以对各种舰船辐射噪声信号进行准确分类。  相似文献   

11.
处理好机舱的噪声对解决船舶的噪声问题具有重大意义.噪声治理技术至今仍不能满足噪声标准.所以,利用声能转换技术将噪声变为电能,不仅能够削减噪声,而且能够变废为宝,从而改善了船舶机舱的环境.  相似文献   

12.
螺肇桨噪声是舰艇辐射噪声的三类主要噪声之一,无论螺旋桨是否发生空化,其辐射噪声在舰噪声的整个频段上都有重要贡献,本文运用流体力学和水声学基本原理从物理意义上解释了螺旋桨噪声的声学机理及其频谱特征,从而为目标噪声特征的提取及其分类和识别方法提供了理论依据。  相似文献   

13.
4 噪声 几乎所有无线电系统都存在噪声干扰问题,自噪声是描述混在GPS信号中的自然噪声的理想模型,自噪声的功率谱密度为常数N0/2(W/Hz)。自然噪声在GPS频段内也有恒定的频谱密度,但自噪声却不是描述人工干扰的最好模型。  相似文献   

14.
货船空调是为货船的居住区域提供新鲜和温度适宜空气的。如果空调送风产生较大噪声,会直接影响船员的日常工作和生活,所以对空调噪声的控制,在现代船舶中十分重要。货船空调噪声主要来源有背景噪声、空调自身的设备噪声、风管传播噪声和室内末端设备噪声。通过对货船空调噪声形成原因的分析,探讨了在设计和建造中,通过合理有效的手段,控制货船空调噪声的方法。  相似文献   

15.
考虑到舰船在海上航行过程中受到海上多种环境因素的干扰,降低了舰船噪声信号的识别性能,为此提出小波变换下舰船噪声信号识别方法研究。基于小波变换原理,对舰船噪声信号进行分解,得到分解后的特征分量,为了消除声呐距离的影响,引入归一化处理方式,提取出舰船噪声信号特征。根据舰船噪声信号的识别形式,计算了舰船噪声信号样本周围的紧密度。基于舰船噪声信号样本的分布情况,设计了舰船噪声信号的识别流程,实现了舰船噪声信号的识别。实验结果表明,小波变换下舰船噪声信号识别方法不仅可以提高舰船噪声信号的识别率,还可以加快识别速度,从而提高了舰船噪声信号的识别能力。  相似文献   

16.
阀门噪声是舰船系统噪声的重要来源。阀门噪声主要包括振动噪声、气蚀噪声以及流噪声。在阀门前后压差较大时,流噪声的影响更为突出。使用CFD技术和声学数值计算方法,分别在阀门前后压差1.8 MPa,1.0 MPa以及0.6 MPa三种工况下进行声学计算,对计算结果进行对比,验证通过降低阀门前后压差来降低阀门噪声的有效性。  相似文献   

17.
基于统计能量分析方法,探究了损耗因子对舱室噪声的影响,并基于实船损耗因子开展了船舶舱室噪声研究。基于统计能量分析方法,建立多舱段典型船舶结构模型,分别施加不同类型的激励载荷,计算并分析了损耗因子对舱室噪声仿真计算结果的影响;针对某船舶进行舱室噪声预报分析,并与实船舱室噪声测试结果比对,验证了舱室噪声预报方法的准确性。在此基础上,通过舱室噪声分布和舱室噪声主导分量分析,探究了船舱室噪声的分布规律,给出船舶噪声控制措施。研究表明,损耗因子对噪声预报结果影响较大,实船测试损耗因子对舱室噪声预报具有重要影响;不同类型设备对舱室噪声影响差异较大,需根据实际情况采用不同的噪声防护措施。  相似文献   

18.
针对新设计的100 m级海峡车客渡船开展舱室噪声预报和控制研究。使用统计能量分析(SEA)软件VA One预报所有舱室的噪声,由经验公式得到喷水激励、主辅机、泵体和风机等设备的结构噪声和空气噪声,并加载间接式通风空调口振动的实测值。采用特性分析的方法讨论结构噪声和空气噪声的传播方式,结果表明,结构噪声比空气噪声传播得更远。分析不同舱室的主要噪声来源,发现船舶下层结构,即艏楼甲板以下舱室的噪声主要来自机舱内,而上层建筑舱室的主要噪声则间接来自通风空调口。对于噪声超标的舱室,采取敷设阻尼材料和吸声材料以及加装消声器的减振降噪措施。研究表明,统计能量法适用于船舶设计阶段的噪声预报和声学优化计算,所得数据可为今后100 m级实船设计提供参考依据。  相似文献   

19.
阀门噪声是舰船系统噪声的重要来源.阀门噪声主要包括振动噪声、气蚀噪声以及流噪声.在阀门前后压差较大时,流噪声的影响更为突出.使用CFD技术和声学数值计算方法,分别在阀门前后压差1.8 MPa,1.0 MPa以及0.6 MPa三种工况下进行声学计算,对计算结果进行对比,验证通过降低阀门前后压差来降低阀门噪声的有效性.  相似文献   

20.
船舶噪声属于污染的一种。噪声会对人体、周围环境会产生一定程度的危害。文章主要论述船舶噪声产生的影响、船舶噪声的传播方式、船舶通风系统噪声的治理与控制办法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号