首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过自动化检测设备对营运中地铁隧道变形[1]进行实时监测,可为复杂地质环境下邻近地铁的基坑施工提供指导依据,但对于整体沉降较大的地铁隧道,自动化设备所测得的沉降变形不能反映地铁实际沉降量。以某沿海城市软土地区邻近运营地铁的深基坑工程为实例,采用自动化监测方法和人工水准测量方法对地铁隧道沉降变形进行动态监测,实测分析发现自动化监测的地铁隧道沉降变形比人工水准测量方法得到的沉降变形普遍偏小。利用人工水准测量结果对自动化监测地铁隧道沉降变形进行修正,能较好的反映隧道的实际沉降变形。  相似文献   

2.
以北京地铁12号线大钟寺站—蓟门桥站区间暗挖隧道下穿京张高速铁路隧道为工程背景,在高速铁路隧道保护设计的基础上,建立了暗挖隧道下穿京张隧道三维有限元数值模拟,总结了京张隧道竖向位移和横向位移随施工步变化特征.通过现场监测,对暗挖隧道拱顶沉降和结构收敛监测结果以及京张隧道竖向位移、横向位移、结构收敛及自动化监测等结果进行了详细分析.研究结果表明:京张隧道竖向位移变化过程为两阶段"S"型曲线;京张隧道中心前16m和后14m范围内是穿越施工显著影响区域;先行和后行隧道施工引起的京张隧道竖向位移分别占总竖向位移的68.3%和31.7%,先行隧道施工是铁路隧道保护关键阶段;数值计算和现场监测表明后施工隧道对铁路隧道竖向位移的空间位置变化作用明显;京张隧道横向不均匀沉降明显,最大值为1.267mm;综合现场监测结果,暗挖隧道和京张隧道相关位移不超过容许值的44%,可认为暗挖隧道设计参数和施工保护方案符合铁路隧道保护要求.  相似文献   

3.
地铁特殊地段使用超大异型断面隧道,因其结构较单管和双管隧道复杂,隧道断面有其自身的特殊性,因此,有必要开展大断面隧道盾构法施工引起的地表沉降监测方面的研究,以便为宁波市地铁后续盾构隧道工程的设计、施工积累经验。本文针对大断面隧道盾构法施工的地表沉降问题进行了现场监测数据分析,结果表明:大断面盾构掘进在施工期间对地表沉降影响较大,在地质较差地段,影响更为明显;大断面盾构施工期间进行二次注浆可明显抑制地表沉降,但在地层比较薄弱或被其他施工扰动过的地段应严格控制注浆量和注浆压力;大断面盾构施工后期沉降稳定时间远比单圆盾构后期稳定时间长,后期沉降影响更为显著。  相似文献   

4.
文章对南京地铁S3线大断面矿山法隧道CRD法不同步序的施工变形进行监测和分析,结果表明:无论采用Ⅰ→Ⅱ→Ⅲ→Ⅳ部标准步序还是调整为Ⅰ→Ⅲ→Ⅱ→Ⅳ部步序施工,地表沉降主要由上部(Ⅰ、Ⅲ部)开挖时引起,拱顶沉降在下部(Ⅱ、Ⅳ部)施工时变化明显,两种步序施工地表和隧道变形没有明显差异。  相似文献   

5.
针对西安地铁5号线近距离下穿地铁2号线的工程实际情况, 分析了既有地铁线路的安全判断准则、正常使用要求和服役状态, 选取弯矩、曲率半径、容许应力、容许切应变与轨道变形作为新建地铁隧道下穿时既有地铁线路沉降标准的控制因素, 构建了既有地铁线路的力学模型, 推导了既有地铁线路允许沉降计算公式, 确定了黄土地区新建地铁隧道下穿时既有地铁线路的沉降控制标准。分析结果表明: 以既有地铁线路的弯矩、曲率半径、容许应力、轨道变形与容许切应变依次作为控制因素时既有地铁线路允许沉降分别为22.40、20.85、48.14、20.23、21.06mm, 其他地区下穿工程经验允许沉降与国内相关规范允许沉降为20mm, 因此, 最不利控制因素即轨道变形的允许沉降接近既有相关允许沉降, 建议黄土地区新建地铁隧道下穿时既有地铁线路沉降控制基准为20mm; 对既有地铁线路沉降控制标准进行了分级管理, 选取沉降控制基准的100%、80%和60%分别作为既有地铁线路的控制值(20mm)、报警值(16mm) 与预警值(12mm), 提出了下穿时既有地铁线路的预警体系; 评价了新建地铁隧道下穿时既有地铁线路沉降的安全级别, 并给出了相应的处置措施, 安全级别为Ⅰ级, 即沉降不大于12mm时, 新建隧道正常施工并做好监测, 安全级别为Ⅱ级, 即沉降为(12, 16]mm时, 加强监测并实时反馈, 安全级别为Ⅲ级, 即沉降为(16, 20]mm时, 停止施工, 并启动应急预案, 安全级别为Ⅳ级, 即沉降大于20mm时, 达到破坏级别, 不允许施工。   相似文献   

6.
为验证苏亭隧道浅埋段和边坡支护结构设计的合理性,在施工过程中布置测点开展监测工作。监测分析结果表明隧道浅埋段施工期间,地表下沉和边坡沉降变形均呈现前期变化速率快,后期逐渐趋于平稳的趋势。明洞回填阶段,地表下沉和边坡沉降变形量均较小,说明隧道围岩、支护结构和边坡均达到了稳定状态,隧道支护结构设计与施工方案可行。  相似文献   

7.
以杭州地铁 9 号线一期工程下穿沪杭铁路框架桥为背景, 建立盾构下穿施工三维数值模型, 分析软弱地层环境下地铁盾构隧道下穿施工对铁路框架桥的影响, 提出多种确保铁路安全运营应对措施, 并在施工过程中进行现场监测。 数值分析表明, 盾构隧道下穿施工中铁路框架桥最大沉降量为 6. 72mm, 进行洞内注浆加固后, 最大沉降量降为 4. 76mm, 说明在软弱地层环境下及时进行洞内注浆对抑制铁路框架桥的沉降变形具有显著效果; 监测结果表明, 盾构右线施工对框架桥沉降变形的影响大于左线, 铁路框架桥最大沉降达到 6. 9mm, 采取应对措施及时进行洞内二次注浆, 可有效控制框架桥的持续沉降变形, 铁路框架桥处于安全可控状态。  相似文献   

8.
张旭东 《北方交通》2022,(2):85-87,91
以某山岭隧道叠交上穿既有地铁区间隧道施工为例,采用MIDAS/GTS有限元软件,模拟计算并分析了该工程施工期及运营期对既有地铁区间隧道位移特征的影响,并对该既有地铁区间隧道的安全性进行了研究.研究结果表明:施工及运营期间,既有隧道所受上方隧道开挖的位移影响以竖向位移为主并满足相关要求;相比于施工阶段,运营期各方向变形皆有减小;从新建隧道施工开挖到远离与既有隧道的叠交影响区域,施工均对既有隧道的竖向位移产生明显影响,此阶段需要加强监测,并及时反馈指导施工.  相似文献   

9.
盾构法作为地铁隧道施工的一种主要施工方法已在我国得到了广泛的应用,由施工引起的地层移动和地表沉降是盾构隧道设计和施工中非常关注的问题。以广州地铁三号线某盾构区间的两条水平平行隧道为研究对象,运用三维有限差分法对盾构隧道施工引起的地层移动和地表沉降进行了较为系统的研究,得出了两条盾构隧道开挖面距离、注浆压力的大小对地表沉降的影响规律,取得了一些新的认识和具有实用价值的研究成果。  相似文献   

10.
城市地铁隧道开挖往往会下穿、侧穿建(构)筑物。为保证隧道顺利开挖,有必要对既有结构进行受力与变形研究。以西安地铁四号线某区间盾构侧穿高架桥施工为例,通过数值模拟和实时监测分析盾构侧穿高架桥桩所引起的受力与变形,并将数值计算得出的沉降值与实际监测值进行对比。结果表明:盾构在砂层环境下,土压力的大小对地表沉降的影响较大;桥墩对地表沉降有一定的约束作用,盾构施工中在合适的地方布置桩基,能有效的减小既有结构的沉降。研究结果可供类似盾构侧穿风险源参考。  相似文献   

11.
为解决城市浅埋地铁隧道下穿岩溶地层高速公路路基时导致的路基变形问题,以某市地铁矿山法隧道下穿高速公路路基为例,采用理论设计与施工监测相结合的方法,从岩溶处理、地下水控制及隧道支护等方面进行研究。研究结果表明:针对该路段灰岩溶洞分布不规则、裂隙水分布复杂的地质条件,对溶洞和地下水进行分区处理,得到了良好的效果;采用溶洞和地下水优先处理及双向大管棚超前支护后进行隧道施工的方法,可使高速公路路基的沉降得到有效控制,满足高速公路路基的沉降控制标准。  相似文献   

12.
富水软土地层地铁开挖地表沉降离心模型试验   总被引:2,自引:0,他引:2  
为了选择富水地层地铁隧道开挖的最佳施工方法,考虑流固耦合、时间和施工3种效应的综合作用,对在富水软土地层中开挖地铁隧道引起的地表沉降进行了离心模型试验,并对降水、动态降水和非降水3种施工方法进行了对比研究.结果表明,非降水施工是控制地表沉降最有效的方法.研究成果已成功地应用于深圳地铁工程中.  相似文献   

13.
青岛地铁2号线要下穿正在施工的地铁3号线隧道区间,两条线二衬最近相距0.8m左右。在施工过程中,对地铁3号线采用涨壳式预应力锚杆加固、注浆堵水等措施,对地铁2号线掘进采用超前管棚注浆支护、减震及微爆破的施工技术,成功的实现了下穿。工程监测表明,隧道区间未见裂缝与漏水,沉降及振速均满足要求,证明所采取的措施有效。  相似文献   

14.
土压平衡盾构隧道引起的地表沉降规律研究   总被引:1,自引:0,他引:1  
盾构法作为地铁隧道施工的一种主要施工方法已在我国得到广泛的应用,由施工引起的地层移动和地表沉降是盾构隧道设计和施工中备受关注的问题。以广州地铁3号线某盾构区间隧道为研究对象,运用三维有限差分法对盾构施工过程中影响地面沉降的因素——土舱压力、盾尾注浆压力和地层损失率进行较为系统的研究,可得出结论:影响盾构隧道地表沉降最大的因素为地层损失和注浆压力,增大土舱压力对降低隧道地表沉降的作用非常有限。  相似文献   

15.
为防止地表沉降引发隧道事故,以青岛地铁4号线福州路车站为研究对象,运用现场监测数据与Midas GTS NX模拟软件,对青岛地铁浅埋隧道施工沉降规律和控制优化措施进行了系统研究。在分析地质勘查资料、沉降数据和超前地质预报的基础上,得到了影响隧道稳定性的因素及该区段的沉降规律;通过建立不同水位环境下的渗流-应力耦合模型,分析了其在地表的沉降规律,确定了最大沉降位置即最不利位置并进行了合理优化,为类似地下工程设计与施工提供参考。  相似文献   

16.
根据黄土地层不同土的物理力学参数,应用邓肯—张本构模型,在地铁隧道开挖施工过程中,对支护锚杆系统沿隧道纵向和横向的不同分布形式进行有限元数值计算。应用有限元软件MIDAS,根据西安地铁2号线隧道的相关土性和设计资料,对比了锚杆长度和锚杆纵向间距对地层沉降和锚杆受力特征的影响;探讨了锚杆纵向间距的疏密布置以及横向加密的位置。分析表明:随着锚杆长度的增加地层沉降减小,当锚杆长度大于一定值后沉降变化幅度降低;当锚杆纵向布置疏密不均时,沉降量较大;在隧道腰部加密锚杆可控制地表沉降。  相似文献   

17.
陈勇  李斌 《交通标准化》2009,(21):142-145
通过对马鞍山长大隧道进行围岩变形现场监测与分析,获得在复杂地质条件下,各施工阶段的地表沉降、拱顶下沉和水平收敛等资料,可有效地控制施工阶段围岩变形,为隧道的支护体系设计优化提供依据,从而起到指导施工的作用。  相似文献   

18.
隧道漏水对地铁的运营、养护及维修危害较大。在堵漏施工过程中必须对轨道、管片进行监控量测,传统的人工监测无法实时掌握隧道结构的动态变化并满足信息化施工要求。因此,采用自动化监测系统进行既有线的变形监测具有重要现实意义。以“哈尔滨地铁1号线”为案例,分析介绍自动化监测技术在地铁隧道运营堵漏施工中的实际运用。  相似文献   

19.
大跨度特长公路隧道浅埋段的施工监测   总被引:1,自引:1,他引:0  
结合青岛一兰州高速公路马鞍山长大隧道进口浅埋段施工实践,通过对该隧道的围岩变形、地面沉降等进行现场监测与数据分析,得出其各施工阶段的地表沉降、拱顶下沉和水平收敛数据,反映了围岩变形,提出了相应的施工措施,有效地控制了隧道围岩的较大变形,确保了隧道安全施工。  相似文献   

20.
地铁盾构隧道施工对邻近管线的影响分析   总被引:1,自引:0,他引:1  
为了获得地铁隧道盾构法施工对临近地下管线的变形和应力的影响规律,以大连地铁二号线某区间隧道工程为背景,利用FLAC3D软件对隧道盾构施工引发的地层变形所导致的管线变形、应力进行了精细模拟,得到双线隧道施工完成后横向地表沉降槽不符合叠加理论,存在少量差值,双线隧道贯通时最大沉降值为11.26 mm,盾构隧道地层体积损失率为1.46%,地表沉降槽宽度系数为0.81.按两条隧道互不影响沉降叠加,最大沉降值为11.93 mm;右线隧道贯通时,燃气管最大沉降值为10.1 mm,左线隧道贯通时,燃气管最大沉降值为11.4 mm,最大沉降位置向左有少量偏移.随着右线盾构掘进施工,污水管道沉降逐渐增大,最大沉降变形为5.45 mm,线隧道贯通后,污水管线最大沉降值为9.79 mm.整个过程两管均处于安全状态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号