首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为研究大坡道米轨(齿轨)有砟轨道结构稳定性,通过建立米轨离散元和有限元轨排模型,分析该结构在不同坡度条件下道床阻力变化及在荷载作用下轨排纵、横向稳定性。研究表明:(1)受轨枕与道床之间正压力减小和道砟颗粒之间接触减弱的共同作用,随着坡度增大,轨枕道床纵、横向阻力逐渐降低,且降低幅度明显高于轨枕与道床间正压力的降低幅度;(2)随着坡度的不断增大,在纵向制动荷载作用下轨枕位移显著增大,且有砟道床整体稳定性逐渐降低;(3)综合考虑轨枕位移及有砟道床整体稳定性,建议米轨有砟轨道最大坡度不超过500‰;(4)在温度荷载及制动荷载作用下,为保证米轨铁路曲线段的横向稳定性,在坡度为250‰时,无齿轨段曲线半径≮700 m,有齿轨段曲线半径≮600 m。  相似文献   

2.
为分析不同轨道坡度对道床纵横向阻力的影响,开展米轨铁路有砟轨道钢枕平坡和250‰坡度道床纵横向阻力室内试验,并建立离散元模型,通过室内试验验证了离散元模型的正确性,进一步建立了多种坡度的米轨钢枕有砟道床离散元模型。研究结果表明:平坡与250‰坡度米轨钢枕道床纵向阻力实测均值分别为11.33,10.31 kN/枕,道床横向阻力均值分别为7.44, 7.11 kN/枕,纵向阻力衰减了9%,横向阻力衰减了4.44%;米轨钢枕的道床纵横向阻力均随坡度增大而减小,坡度在0~700‰变化时,道床纵向阻力与横向阻力之间存在线性关系,斜率约为1.7,纵向阻力变化程度大于横向阻力;道床纵横向阻力均随坡度呈余弦趋势衰减,但并非单一的按照坡度的余弦值改变,在坡度小于200‰时,道床阻力可近似按坡度余弦折算考虑,坡度大于200‰时,可根据拟合余弦公式预测道床阻力。  相似文献   

3.
为分析大坡道地段米轨扣件系统线路整体稳定性,以某山区拟建的米轨铁路为背景,通过道床阻力试验获取该线路纵向阻力参数,建立齿轨轨排有限元模型分析不利荷载情况下的道床纵向移动,在此基础上以正常安装状态下钢轨与轨下胶垫产生的相对滑移量作为评价指标,分析大坡道情况下米轨-扣件系统的整体稳定性.研究结果表明:(1)螺栓扭矩至少达到...  相似文献   

4.
研究目的:为分析米轨混凝土枕有砟道床横向阻力变化特征,本文首先通过圆筒堆底试验与离散元模拟对道砟的摩擦系数进行标定,然后采用离散元法研究匀速推动轨枕和变速推动轨枕两种情况下米轨道床横向阻力特性,同时用单根轨枕测试法开展米轨道床横向阻力试验以验证离散元模型的正确性,最后利用离散元模型探究道砟堆高和道床肩宽对米轨混凝土枕有砟道床横向阻力的影响。研究结论:(1)通过圆筒堆底试验与离散元模拟发现,道砟颗粒摩擦系数取0. 63时与试验结果相吻合;(2)与匀速推动轨枕相比,变速推动轨枕得到的道床横向阻力仿真值与实测值更吻合,因此变速推轨枕得到的道床横向阻力的仿真精度更高;(3)米轨混凝土枕有砟道床横向阻力随着砟肩堆高的增加而增大,砟肩堆高150 mm能显著提高米轨混凝土枕有砟道床横向阻力;(4)随着道床肩宽的增加,米轨混凝土枕有砟道床横向阻力不断增大,当道床肩宽在400~500 mm之间时对道床横向阻力的提高最经济有效;(5)本研究成果可为米轨铁路无缝线路设计理论和米轨铁路有砟道床设计理论提供参考。  相似文献   

5.
轨排框架法施工技术是我国高速铁路双块式无砟轨道施工采用的主要施工技术,具有施工精度高、质量稳定可靠等特点。重载铁路相对高速铁路曲线半径小,对轨排框架长度、刚度均有一定适用性要求。通过理论计算确定在重载铁路最小曲线半径条件下适用的最大轨排框架长度,通过有限元建模分析轨排框架刚度对重载铁路曲线轨道状态的适用性以及确定轨排框架支撑条件对道床结构高度较高的重载铁路无砟轨道的适用性。  相似文献   

6.
研究目的:为探究米轨铁路钢枕道床横向阻力变化特征,本文开展米轨铁路钢枕道床横向阻力试验,并基于离散元法建立并研究米轨钢枕有砟道床横向阻力,通过试验结果验证米轨钢枕有砟道床离散元模型,同时采用离散元法分别探究砟肩堆高、道床肩宽和道床边坡坡度对米轨铁路钢枕道床横向阻力的影响.研究结论:(1)轨枕横向移动2 mm时米轨钢枕道...  相似文献   

7.
齿轨铁路具备优越的爬坡性能,国外多铺设于山区旅游线路,我国尚无应用.针对齿轨铁路线路坡度大的特点,基于离散单元法建立大坡度有砟道床离散元模型,研究道床纵向阻力随坡度变化规律,并以所得结论为基础,建立齿轨铁路空间耦合有限元模型,对Strub模式齿轨铁路轨排稳定性及结构受力变形进行计算分析.研究结果表明:(1)道床纵向阻力...  相似文献   

8.
米轨钢枕铁路轨排框架较轻、线路阻力小,应用于无缝线路存在适应性问题。以坦桑尼亚中央线为例,针对米轨钢枕线路的结构特征与特殊运营条件,分析了不同曲线半径、不同阻力等条件下的线路稳定性、钢轨强度,评估铺设无缝线路的适应范围。研究表明:在R300m曲线段无缝线路强度、稳定性可直接通过验算;对R≤300m曲线段采取轨枕加密措施后,强度及稳定性满足要求;但考虑坦桑尼亚地区温度变化较大,允许温升下稳定性安全余量有限,故应在R≤300m小半径曲线段设置必要的加强措施;建议道床选取有砟肩的型式,砟肩高300 mm、宽300 mm。  相似文献   

9.
为明确米轨混凝土轨枕和钢枕道床阻力,建立了实尺米轨铁路有砟轨道试验平台,采用原位测试法测试单根轨枕的道床阻力,并拟合得出道床纵向、横向阻力-位移关系函数.结果表明:位移为2 mm时,米轨混凝土轨枕和钢枕道床的纵向阻力设计值分别为9.67、8.31 kN,道床横向阻力设计值分别为5.27、4.98 kN,米轨混凝土轨枕、...  相似文献   

10.
为研究城际铁路有砟道床的力学特性,采用现场试验及PFC3D数值模拟进行研究,明确了道床横向阻力、纵向阻力、支撑刚度之间的相互影响规律,阐明了边坡坡度、轨枕埋深、砟肩宽度对道床横向阻力的影响规律,主要得到了以下结论:道床横向阻力随纵向阻力的增加呈线性增大的趋势,且横向阻力仅为纵向阻力的58%;道床横向阻力检测试验操作简单,对轨道干扰小,可以采用检测道床横向阻力来代替支承刚度的检测,再通过道床横向阻力与支撑刚度之间的线性关系进行换算;道床边坡越缓,轨枕埋深越大,砟肩宽度越宽,道床的横向阻力越大。研究成果可为后续有砟轨道的修建和养护提供参考。  相似文献   

11.
为分析列车制动力和温度荷载对小半径曲线上带减振扣件整体道床轨道横向力学特性的影响,为小半径曲线上无砟轨道设计提供理论依据。参考贵阳地铁1号线带减振扣件的整体道床结构形式,简化钢轨-桥梁-墩台垂向耦合力学模型,应用有限单元法,计算分析不同列车制动力和温度力对小半径曲线桥梁轨道结构横向力学特性的影响。计算分析结果表明:从无砟轨道稳定性角度出发,对于在有小半径曲线桥梁上的带减振扣件的承轨台整体道床轨道,建议当圆曲线半径为450 m时,扣件横向刚度要大于5×107 N/m;当扣件横向刚度为5×107 N/m时,圆曲线半径要大于450 m;当扣件横向刚度为1×108 N/m时,圆曲线半径要大于350 m。当圆曲线半径为450 m时,为减小制动力对曲线钢轨的影响,建议尽量减小曲线长度,缩小钢轨横向位移值。  相似文献   

12.
高速铁路无砟轨道曲线超高一般设置在无砟道床结构中,一旦施工完成超高将无法调整。如果列车提速,欠超高将增大,进而影响列车舒适度并降低安全性。因此,研究无砟轨道超高可调技术具有重要意义。本文提出以WJ-8型扣件为基础的调超高技术方案,实现无砟轨道曲线超高调整。经室内试验,调整后扣件结构满足相应标准要求。在大西客运专线进行了实车试验和长期监测,结果表明无砟轨道调超高扣件满足高速动车组运行的安全性和稳定性要求。该技术为高速铁路无砟轨道曲线地段列车提速提供了技术储备,并节约了改造工程的费用。  相似文献   

13.
为研究大坡道桥上CRTSⅢ型板式无砟轨道无缝线路梁端轨道结构力学性能变化规律,基于有限元法和梁-板-轨相互作用机理,建立桥上无砟轨道无缝线路梁端过渡板结构空间精细化有限元模型,分析桥梁梁体温差、温度跨度以及梁体坡度等因素对增设过渡板后梁端轨道结构力学性能的影响。分析结果表明:梁端轨道结构受力随桥梁梁体温差、温度跨度和桥梁纵向坡度增大而增大,与之相反,轨道板稳定系数逐渐变小;位于坡道上的桥梁增设过渡板后,梁端轨道结构受力明显减小,轨道板稳定系数显著增加;当桥梁纵向坡度为20‰,桥梁温度跨度由88 m增加至210 m时,桥梁梁端处扣件最大拉力和最大压力分别增大2.4倍和2.5倍,钢轨弯曲应力近似线性增加,轨道板稳定系数呈小幅度减小趋势;当梁体温度跨度为101 m,桥梁纵向坡度由5‰增大至35‰时,桥梁梁端处扣件最大拉力和最大压力均增大了近3.2倍,钢轨弯曲应力线性增加,轨道板稳定系数变化幅度在梁体纵向坡度取10‰时发生突变,幅度明显变小,减小趋势变缓;在平坡地段,梁体温度跨度变化引起的梁端轨道结构力学性能变化很小。研究成果可为大坡道桥梁梁端轨道结构设计以及轨道结构安全服役和运营维护提供参考...  相似文献   

14.
研究目的:为了研究米轨混凝土枕和钢枕横向阻力分担情况,本文采用离散元法分别建立米轨混凝土枕和钢枕有砟道床模型,并通过单根轨枕横向阻力试验验证离散元模型的正确性,进一步研究米轨混凝土枕、钢枕横向阻力分担比例。同时在离散元模型不同部位建立测量圆监测道砟孔隙率,探究轨枕横向移动过程中不同部位道砟密实度变化规律。研究结论:(1)米轨混凝土枕枕端和枕底提供了约79%的道床横向阻力,与道砟颗粒接触面大的轨枕侧面道床阻力占比较小,可以采用密实和部分胶结等方式使枕心道砟充分参与作用;(2)米轨钢枕枕端提供了约60%的道床横向阻力,枕底提供了约30%的道床横向阻力;(3)米轨混凝土枕道床横向阻力主要来源于轨枕与底部道砟颗粒的摩擦作用和砟肩道砟的压力作用,而米轨钢枕道床横向阻力主要来源于枕腔内部道砟的挤压摩擦作用和砟肩部位道砟的压力作用;(4)本文结论可为米轨无缝线路的设计和养护维修提供参考和借鉴。  相似文献   

15.
研究目的:为探究道床纵横向阻力变化特征,本文通过进行现场原位试验并采用离散单元法建立道床-轨枕三维离散元模型,研究道砟级配、轨枕埋深、边坡坡度、道床肩宽对道床纵横向阻力的影响。研究结论:(1)道床纵横向阻力随着道砟级配变宽而增大,当道砟颗粒级配为包络线上下限中间插值及包络线上限时,道床纵横向阻力满足规范要求;(2)道床纵横向阻力随着轨枕埋深增大而增大,当轨枕埋深大于150 mm时,道床纵横向阻力满足规范要求;(3)随着道床边坡坡度变缓,道床横向阻力增大,纵向阻力基本不变,坡度为1∶1.75或更缓时,道床纵横向阻力满足规范要求;(4)随着道床肩宽增大,道床横向阻力增大,纵向阻力基本不变,当肩宽大于400 mm时,道床纵横向阻力满足规范要求;(5)本研究成果对于指导有砟道床设计、施工以及提高有砟道床力学性能具有参考价值。  相似文献   

16.
研究目的:采用少维修的无砟轨道结构是重载铁路长大隧道地段的必然选择,本文通过建立车辆-轨道耦合动力学模型,对不同车速、不同轴重、不同轨道结构、不同过渡形式下的系统动力响应进行对比,以确定出最佳轨道类型和过渡段类型,进而为无砟轨道在重载铁路隧道中的设计提供理论依据。研究结论:(1)车速增加对轨下结构的振动加速度影响较大;(2)随着轴重增加,除轮重减载率以外,其他各项指标均随轴重的增加而增大,且增幅较大;(3)长枕套靴式无砟轨道道床垂向应力较小,但脱轨系数大,道床垂向位移较大;双块式无砟轨道钢轨垂向位移小,但道床垂向应力、钢轨垂向力均较大;弹性支承块式无砟轨道脱轨系数和轮重减载率较小,道床垂向应力适中,利于重载铁路环境下铺设使用;(4)将有砟与无砟过渡段设置在路基上时,车辆运行的安全性指标控制得较好,并且因冲击而产生的钢轨加速度明显减小,且扣件的支反力也明显减小;(5)本研究成果对开展重载铁路无砟轨道结构设计具有参考价值。  相似文献   

17.
桥上纵连板式无砟轨道无缝线路力学性能分析   总被引:1,自引:0,他引:1  
基于有限元法,考虑钢轨、无砟道床、滑动层、桥梁等结构的相互作用关系,建立桥上纵连板式无砟轨道无缝线路纵-横-垂向空间耦合模型,进行滑动层摩擦系数、扣件纵向阻力、无砟道床伸缩刚度等对桥上纵连板式无砟轨道无缝线路的受力和变形影响规律的研究.结果表明:滑动层减弱了桥梁、轨道间的相互作用,当滑动层摩擦系数为0.1~0.5时,无缝线路伸缩力仅为22.821~55.361 kN,远小于一般桥上无缝线路结构;滑动层摩擦系数越小越有利于轨道和桥梁结构的安全使用;底座板/轨道板的伸缩刚度减小会明显增大部分轨道和桥梁的受力,伸缩刚度折减至10%时,伸缩力会增大近6倍,因此应该注意控制底座板和轨道板的开裂现象;扣件的纵向阻力变化对轨道和桥梁结构的受力和变形几乎没有影响,但为了防止钢轨爬行或断缝值超限,扣件阻力不宜太小.  相似文献   

18.
柯朴 《铁道知识》2011,(1):44-47
轨道的基本结构 铁路的轨道结构基本由四大部分组成:即钢轨、轨枕、扣件和道床.轨枕横躺在道床(一般是由碎石组成的有砟道床)上,钢轨"睡"在轨枕上,扣件则把钢轨与轨枕"绑定".为了固定两根钢轨之间的距离,在线路的曲线段还安装有轨距杆.  相似文献   

19.
国内尚无齿轨铁路客运案例,国外已运营线路主要采用有砟轨道,道床稳定性差,道砟易滑落,线路养护维修工作量大。以七星山观光火车旅游项目为背景,基于我国既有成熟的无砟轨道运营经验,提出适用于齿轨铁路的无砟轨道技术:(1)齿轨铁路桁架枕式无砟轨道结构能够在超大坡道地段适应不同线下基础,并具有轨枕与道床联接性强、轨道结构纵向稳定性好、养护维修工作量小的优点;(2)Strub系统结构原理简单明了、易于加工制造、养护维修简单、性价比高;(3)旋转圆盘式齿轨股道转换结构使齿轨列车从一股道平稳、可靠地进入多股道,可大幅减少道岔设备配置数量和场段占地面积。相关结论可为齿轨铁路在国内的建设与运营提供参考,为齿轨铁路的研究工作提供新思路与新方向。  相似文献   

20.
为进一步提升我国高速铁路运输水平,开展既有时速250 km高铁提速关键技术研究迫在眉睫,轨道作为直接承受列车荷载的结构,其速度提高后的适应性是影响列车安全平稳运行的重要因素。基于现场调研、有限元分析、数值计算等方法,针对有砟轨道、无砟轨道、轨道设计超高3个方面的适应性进行研究,并提出了时速250 km高铁提速轨道技术条件。主要结论如下:有砟轨道提速后会引起扣件、道床各动力指标增大,从而降低使用性能;无砟轨道提速后会使道床板和底座板纵横向弯矩增大,路基段道床板纵向弯矩增幅最大,为4.7 kN·m/m;考虑到安全富裕量,提速后路桥隧地段道床板和底座板配筋均能满足强度及裂纹宽度要求;提速后超高需进行相应调整,并满足不同速度下曲线半径及缓和曲线的相关要求;提速后应关注道床结构排水、轨道平顺性等,并符合现行规范相关要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号