首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 312 毫秒
1.
基于FLAC3D软件对既有铁路路堤注浆加固过程中沉降进行数值模拟,分别分析了不同注浆压力、不同注浆管间距下对路基稳定性的影响。结果表明:不同注浆压力和不同注浆管间距对注浆的结果影响较大,浆液对土体的抬升作用也由于工况的不同而呈现不一样的效果。  相似文献   

2.
基于离散元程序数值模拟,建立了地层土体劈裂注浆数值计算模型,分析在不同地压、不同注浆压力条件下,土体发生劈裂后浆液在土体裂隙中的扩散范围及注浆孔周边土体中塑性区分布特征。结果表明:随着注浆压力的增大,浆液在土体中的扩散范围逐渐增大;随着地层压力的增大,浆液的扩散逐步受到抑制,其范围逐渐缩小,土体的可注性下降;地层压力对土体中浆液扩散范围的分布形状亦有明显的影响;在注浆压力增大过程中,注浆孔周围土体处于塑性状态的土体单元增加、塑性区范围增大;当注浆压力一定时,注浆孔周围土体塑性区范围随地压增大而减小;地层劈裂注浆过程存在压密效应。  相似文献   

3.
在假定C-S双液浆符合宾汉姆流体的基础上,考虑双液浆黏度时变性与空间效应,并认为盾构隧道管片注浆符合球形渗透模型,通过平衡方程与Dupuit-Forchheimer公式,对宾汉姆流体壁后注浆渗透扩散规律进行理论分析,得到C-S双液浆扩散半径计算公式以及管片受力计算公式。通过具体实例分析了注浆压力、注浆管内浆液流速以及C-S双液浆黏度参数A与参数Y对浆液扩散半径及管片受力的作用,对比了不同注浆参数对注浆效果的影响。结果表明:浆液扩散半径随注浆压力与注浆管内浆液流速的增大而增大,随黏度参数A与参数Y增大而减小,其中注浆压力与参数Y对浆液扩散影响较大,注浆管内浆液流速与参数A对浆液扩散影响较小;管片受力随注浆压力与注浆管内浆液流速增大而增大,但注浆压力的影响效果不断增大而后趋于稳定,注浆管内浆液流速的影响效果不断减弱而后趋于稳定;管片受力随参数A与参数Y增大而减小,其中参数A对管片受力的影响呈负线性关系,影响效果较弱,参数Y对管片受力的影响呈现"三段式"变化——缓慢减小阶段、加速减小阶段以及快速减小阶段,影响效果明显。  相似文献   

4.
<正>BY12-VI型水中不分散注浆料:主要应用于突水的堵漏,使用时将1000 kg BY12-VI型加入到600 kg水中高速分散剪切乳化15 min,浆液细度小于0.05 mm,初始流动度25s、30 min流动度30 s,然后用压浆泵将浆液压进突水处,当浆体与水接触时不易被水分散掉,随着注浆压力的加大,浆液逐渐把水挤退到半径1~50m以外,水中7d抗压强度大于5 MPa,28 d抗压强度大于10 MPa,28 d抗渗强度大于P12。BY12-IA型早凝早强高强注浆料:与BY12-VI型配合主要应用于突水的堵漏和抢修,使用时将1000 kg  相似文献   

5.
路基注浆既要满足注浆量要求又要使浆液尽快形成强度而满足通车条件,为此,引入水泥-水玻璃双液浆理论解决上述问题。通过调节水泥-水玻璃浆液配比及注浆工艺,保证注浆量和浆液扩散半径,将每根袖阀管分4段注浆,下面3段注纯水泥浆,最上面靠近地表段注10 %的双液浆,确保靠近地表处的浆液在交通解封时尽快形成强度。检测结果表明,路基注浆加固效果良好。调整后的注浆方案既保证了注浆量、浆液扩散半径,又保证了浆体在较短时间内形成强度,满足交通及时解封条件。  相似文献   

6.
针对隧道工程中新建隧道小角度斜下穿既有隧道工程中亟待解决的难题,以西安地铁1号线二期张家村-后卫寨区间左线盾构下穿既有1号线出入段线为工程依托,通过现场调研、数值模拟和现场监测等方法进行施工参数对轨道既有隧道和轨道高差的沉降规律(重点进行对轨道高差的控制)研究。选取土仓压力、注浆压力、注浆量等施工参数,其中注浆量用注浆厚度间接体现,构建三维数值计算模型,并对结果进行分析,依据分析结果给出合理的盾构施工参数建议值,在此基础上进行现场监测,验证给出的施工参数建议值对轨道高差的控制效果。研究结果表明:随着土仓压力、注浆压力的增大,既有隧道的沉降和轨道高差不断减小,当其土仓压力超过0.10 MPa、注浆压力超过0.22 MPa时,既有隧道沉降和轨道高差控制效果不再明显提高;既有隧道沉降和轨道高差随着注浆厚度的增大而减小,其与注浆厚度均近似呈线性关系,因此适当增大注浆范围是控制既有隧道沉降和轨道高差的有效方法;确定的施工参数建议值为0.10 MPa(土仓压力)+0.22 MPa(注浆压力)+0.23 m(注浆厚度);通过现场监测,既有地铁隧道道床上C,B,G,F四条测线上最大沉降量均在6 mm左右(小于20 mm),最大轨道高差为1.2 mm(小于4 mm),均小于规范所要求的控制值,表明以上施工参数建议值对于既有隧道沉降和轨道高差起到了很好控制效果。  相似文献   

7.
压力注浆锚杆在隧道、边坡、基坑等支护工程中应用广泛。为了预测锚杆在不同注浆压力下的锚-土界面黏结强度,将锚-土界面法向应力的发展过程分为2个计算阶段:压力注浆时锚孔扩张半径的计算和浆液硬化后界面法向应力的计算。在计算时,将锚孔扩张过程视为无限土体中的瞬时圆孔扩张问题,考虑塑性区土体服从统一强度准则,推导出压力注浆时锚孔扩张半径解答;然后,考虑土体的时变特性,引入黏弹-塑性圆孔扩张理论,采用Merchant模型推导出浆液硬化后界面法向应力随时间衰减的解答;最后,基于库仑抗剪强度公式,建立了压力注浆锚杆锚-土界面黏结强度的理论计算方法。为了验证所提计算方法的可靠性,采用自制的锚杆微元体压力注浆装置,制作了3种不同注浆压力下的锚杆试样并开展了拉拔试验。将获得的试验结果与所提理论计算结果进行对比,并结合已有的压力注浆土钉拉拔试验结果进一步验证。结果表明:提出的压力注浆锚杆锚-土界面黏结强度的理论计算方法能够准确的预测试验数据,可为工程设计提供参考。最后进行了参数分析,结果表明:锚-土界面黏结强度与注浆压力呈线性关系,注浆压力增大能有效提高锚杆的承载性能;锚-土界面黏结强度随着复合模量的增大呈现...  相似文献   

8.
阳云  李广跃 《隧道建设》2018,38(11):1888-1894
为了解决过海隧道建设过程中安全快速穿越不良地质段的问题,依托厦门地铁3号线本岛至翔安过海隧道工程,针对其不均匀软弱围岩,对超前帷幕注浆方案进行研究。针对原“99孔-25 m”设计方案存在施工效率低下的问题,通过采取以“减少钻孔、配套优化”为主的系列优化措施,确定“56孔-25 m分段前进式”超前帷幕注浆方案: 1)径向加固范围为工作面及开挖轮廓线外5 m; 2)纵向加固范围为25 m; 3)浆液扩散半径为1.5 m; 4)注浆终孔间距为2.2 m; 5)使用普通硅酸盐水泥单液浆、超细水泥-水玻璃双液浆2种注浆材料; 6)注浆终压为0.5~1.5 MPa。结果表明: 方案优化后的扫孔效率提升至200 m/d以上,注浆效率提高3倍以上,综合施工速度平均达到1.72 m/d,为原计划的2倍,证明了优化方案的合理性和有效性。  相似文献   

9.
针对隧道工程中新建隧道小角度斜下穿既有隧道工程中亟待解决的难题,以西安地铁1号线二期张家村-后卫寨区间左线盾构下穿既有1号线出入段线为工程依托,通过现场调研、数值模拟和现场监测等方法进行施工参数对轨道既有隧道和轨道高差的沉降规律(重点进行对轨道高差的控制)研究。选取土仓压力、注浆压力、注浆量等施工参数,其中注浆量用注浆厚度间接体现,构建三维数值计算模型,并对结果进行分析,依据分析结果给出合理的盾构施工参数建议值,在此基础上进行现场监测,验证给出的施工参数建议值对轨道高差的控制效果。研究结果表明:随着土仓压力、注浆压力的增大,既有隧道的沉降和轨道高差不断减小,当其土仓压力超过0.10 MPa、注浆压力超过0.22 MPa时,既有隧道沉降和轨道高差控制效果不再明显提高;既有隧道沉降和轨道高差随着注浆厚度的增大而减小,其与注浆厚度均近似呈线性关系,因此适当增大注浆范围是控制既有隧道沉降和轨道高差的有效方法;确定的施工参数建议值为0.10 MPa(土仓压力)+0.22 MPa(注浆压力)+0.23 m(注浆厚度);通过现场监测,既有地铁隧道道床上C,B,G,F四条测线上最大沉降量均在6 mm左右(小于20 mm),最大轨道高差为1.2 mm(小于4 mm),均小于规范所要求的控制值,表明以上施工参数建议值对于既有隧道沉降和轨道高差起到了很好控制效果。  相似文献   

10.
汪旵生 《路基工程》2015,(4):247-251
针对向莆铁路高盖山隧道掌子面的突水突泥情况,采用挡碴墙对掌子面堆积体进行加固,并在堆积体上设计三级止浆墙,采用在上半断面钻孔辐射至洞身全断面的帷幕注浆方案进行加固。设计了超前帷幕注浆孔位置及轮廓线,并确定注浆长度为30 m,扩散半径为5 m,注浆压力4~6 MPa,针对开挖后可能的渗水情况提出了径向补强注浆设计方案,注浆效果及注浆质量符合设计要求。  相似文献   

11.
某隧道穿越F4-5、F2-6宽张断层破碎带,右洞长6350 m,左洞长6336 m,超前探孔最大涌水量为1650 m^3/h,静水压力右洞为4.3 MPa,左洞为4.8 MPa,围岩为Ⅲ级安山玢岩。为解决隧道施工中遇到的高压涌水问题,施工采用全断面超前帷幕预注浆技术,纵向加固范围为41 m,径向加固范围为轮廓线以外8 m,注浆终压为水压的2~3倍,浆液扩散半径为2 m。通过对注浆材料的灵活运用、注浆顺序的优化等措施,总结并提高了目前帷幕注浆施工工艺和技术,加快了扫孔、注浆的效率,加快了施工进度,达到了最佳的注浆效果和工效,确保了该隧道顺利通过高压富水宽张破碎带,供类似全断面超前帷幕注浆参考。  相似文献   

12.
注浆方法是加固隧道泥质断层的有效手段,为解决多序注浆产生劈裂压力和劈裂路径宽度的计算问题,揭示多序注浆之间的动态影响规律,为注浆设计提供理论指导,采用理论推导和模型试验方法开展研究,旨在推动劈裂注浆工程设计向科学化和可控化发展。泥质断层劈裂注浆工程中,建立合理的土体应变ε-应力p曲线模型是进行注浆设计参数(压力、劈裂路径宽度)计算的基础,注浆具有多序次特点,先序注浆的加固作用使得土体ε-p曲线模型具有动态性,进而导致浆液劈裂扩散模型的动态性。在土体初始压缩的基础上,以先序固结压力pc和再压缩土体特征压缩模量E's1-2为表征参数,提出了适用于后序注浆中被注土体再压缩变形的ε-p曲线模型及其参数求解方法,进而建立了再压缩土体浆液劈裂扩散模型,与采用初始压缩土体浆液劈裂扩散模型相比,所取工况下劈裂路径宽度计算值降低幅度最高可达26.59%,浆液驱动压力计算值提升幅度最高可达269%,证明了考虑先序注浆影响的必要性。开展了"三管四序次"可识别性劈裂注浆模型试验,分别对比第1,2序和第2,3序注浆,后序最大注浆压力提升96.4%和5.45%,平均注浆压力提升104.8%和20.16%。此外,后序注浆劈裂路径宽度相比先序降低了58.2%~69.3%,验证了理论推导结果的正确性,试验还监测了可反映浆液对于被注介质的"加固行为"的土压力变化规律以及浆液劈裂路径的三维分布形态。  相似文献   

13.
扬州瘦西湖盾构隧道工程施工关键技术   总被引:2,自引:0,他引:2  
王承震 《隧道建设》2015,35(8):828-833
扬州下穿瘦西湖盾构段采用直径为14.93 m的泥水盾构施工,成功穿越1 275 m硬塑膨胀性黏土地层,有效解决盾构刀盘结泥饼、泥水舱及管道易堆积堵塞、刀盘扭矩大、盾构推进速度慢、泥水分离困难等一系列施工难题,是我国迄今为止在膨胀土地区进行的最大直径的泥水盾构施工工程。从扬州瘦西湖隧道的工程重难点出发,结合现场具体情况,系统总结隧道盾构施工中的全断面黏土地层高效环流及出渣技术、膨胀土地层盾构适应性改造技术、硬塑黏性土地层的盾构施工技术与开挖面稳定性控制技术,0.42 MPa高压气环境下动火焊接技术、小半径曲线精准接收技术和双层大直径隧道内部结构快速施工技术等,对我国膨胀性黏土地区大直径泥水盾构技术的发展具有重要的参考意义。  相似文献   

14.
杨红军  荣亮  徐虎城 《隧道建设》2016,36(4):458-464
郑州市下穿中州大道隧道工程采用矩形顶管法进行施工,顶管段具有断面超大、覆土浅、间距小、推进距离长、未采用中继间等特点,顶管推进推力大。为有效控制顶管推力,研究了注浆孔布置、触变泥浆配制、注浆管路优化设计和管节表面涂蜡等顶管减阻技术。结果表明,本工程采用的减阻技术效果良好。  相似文献   

15.
为了实现可在2.0 MPa高水压环境下开展盾构试验研究的基础试验条件,结合拟建的琼州海峡隧道工程背景,充分调研了国内外盾构模型机研究成果,并根据试验研究的需求,研发了高水压多功能泥水平衡盾构模型试验平台。试验平台研制过程中攻克了在缩尺盾构模型机中实现泥水循环功能的问题,解决了高水压(2.0 MPa)下盾构机以及土箱整体强度和密封问题,实现了盾构姿态改变、变覆土高度等功能。按照一定的试验先期准备步序,在不同水压条件下,对泥水平衡盾构开挖过程中盾构姿态动态变化规律进行了模型试验研究。试验平台包括模型土箱、盾构模型机、液压泵站、电控柜、控制台、泥水循环系统等部分,可在200 m水头的高水压条件下进行泥水盾构施工的模型试验。研究结果表明:自主研发的泥水平衡掘进模型试验平台可在高水压条件下正常进行工作,并可进行与泥水盾构施工相关的模型试验;盾构姿态角改变量与盾构掘进距离的线性拟合结果表明,二者的拟合精度较高;随着试验水压的升高,在水平方向以及竖直方向上盾构姿态调整的难度逐渐增大;通过有土环境与无土环境的对比可知,高水压与地层反力的双重约束对盾构姿态控制提出了更高的要求。  相似文献   

16.
劈裂注浆技术已在众多岩土工程中成功应用,但劈裂注浆机理不明,起始劈裂注浆压力计算理论远远落后于工程实践的发展。为了揭示黏土注浆过程中起始劈裂注浆的力学机理,假定土体服从各向同性不排水条件,基于球形和柱形扩张弹塑性理论,采用应力转换方法,结合偏微分方程组的定解条件,得到2种小孔扩张问题的数值解,通过简化分析小孔扩张孔壁处土体单元的应力变化规律,建立了球形与柱形扩张弹塑性方程,并结合受拉破坏、剪切破坏以及临界状态极限破坏模型,提出黏土注浆3种起始劈裂压力解析解。解析解与数值解对比结果表明:当土体的超固结比(OCR)为2时,数值解与解析解计算扩孔压力一致,当OCR小于2(或大于2)时解析解计算扩孔压力略高于(或略低于)数值解,验证了不同超固结比下弹塑性解析解的合理性以及实用性。黏土劈裂注浆模型试验与参数分析表明:在黏土劈裂注浆过程中,先后经历土体压密、沿垂直小主应力方向产生起始劈裂以及裂缝扩展3个阶段;随着注浆压力的增大,注浆体周围土体先发生剪切破坏,随后浆液会填充剪切破坏面,再发生拉伸破坏;对比由剪切破坏、拉伸破坏以及临界状态极限破坏控制的球形和柱形扩张起始劈裂压力理论值与模型试验结果,柱形小孔扩张拉伸破坏理论方法和模型试验结果更吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号