首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
在船舶结构中,球扁钢经常用作纵骨、肋骨、横梁和舱壁扶强材等骨架构件。这些构件在结构布置上往往与实肋板、强横梁,舷侧纵桁、甲板纵桁和水平桁材相直交,而需穿孔。一般纵骨架式的结构,在承受总纵弯曲方面较之横骨架式更加有效,因而被广泛采用。这就使得这类穿孔节点的数量大为增加。如我厂建造的一艘艉机型万吨级多用途出口货船(Sea Archetecture号)的货舱双层底等  相似文献   

2.
本文通过建立船底纵骨受力的计算图式,对纵骨架式双壳船的船体结构中船底纵骨强度校核分析,得出了在设计中需综合考虑构件的局部强度和总纵强度的影响,从而避免因构件强度不足引起的船体结构损害的结论。  相似文献   

3.
温保华  吴嘉蒙 《船舶》2015,(Z1):68-73
目前的结构规范中对于装载钢卷的结构构件尺寸要求仅针对纵骨架式结构。但在实船设计时,仍有部分内底(如管弄)和底边舱区域会采用横骨架式甚至混合骨架式结构布置。文章基于协调共同结构规范关于纵骨架式结构装载钢卷时计算的理论背景,采用有限元法,探讨和建立一种可行的横骨架式结构装载钢卷的直接强度评估方法流程。经实船算例分析验证了方法的可行性和合理性,表明该方法具有实际工程价值。  相似文献   

4.
以8万吨邮轮顶甲板为研究对象,基于规范对结构布置和强度计算等描述性要求,从骨架型式、纵骨间距、强横梁设置,以及普通碳素钢、高强度钢、铝合金材料适用性等方面,开展目标邮轮顶甲板结构设计。考虑到建造施工便利性、减少构件焊接量、易于控制甲板结构变形等因素,确定采用合金带筋板结构轻量化设计方案。研究成果可为邮轮上层建筑结构轻量化设计提供参考和借鉴。  相似文献   

5.
针对某MR型油船无顶凳槽形舱壁设计中,舱壁前后一档强框范围内甲板纵骨应力水平高,存在结构安全隐患的问题,基于有限元计算分析,通过多方案对比,探讨甲板结构布置形式对槽形横舱壁上端约束的影响,提出一种优化的甲板短纵桁布置方案及其端部连接型式,既可有效降低舱壁附近甲板纵骨的应力水平,又可解决短纵桁与纵骨连接处的疲劳问题。  相似文献   

6.
根据结构力学原理,对渔船横骨架式舷侧强肋骨弯曲强度、纵骨架式甲板纵桁弯曲强度进行理论分析,给出了直接计算的详细步骤,以期为今后渔业船舶设计图纸的审查工作提供一定的借鉴。  相似文献   

7.
以某火车滚装船项目为例,从分区、泵组、智能遥控、喷头布置、分区总管布置等方面对火车舱水幕系统进行设计与布置优化。与基础设计和布置进行比较,优化设计具有消除相邻分区喷淋盲区、减少泵组数量、减少管材耗量和减少现场施工量等优势。经实船试验,设计与布置优化可为后续或类似船型火车舱水幕系统的建造提供有价值的参考和借鉴。  相似文献   

8.
用三维有限元法分析了腹板焊接型切口结构的应力分布,并进行了静载压缩(三点弯曲)对比试验。结果表明,对于腹板焊接型切口,只在切口处加补板与只在切口下端加防挠材这两种纵骨通孔抗裂纹强度相当,为造船生产中合理、经济地选用纵骨通孔加强形式提供了理论参考依据。  相似文献   

9.
对带较长船楼上层建筑的船体立体分段钢质模型进行了弯曲试验,分别研究了以下三种结构状态下,船楼结构参与船体总纵弯曲时的应力分布:(1)完整船楼;(2)切除船楼端部侧壁板和纵向骨架,保留肋骨框架;(3)仅将船楼端部侧壁板切割分离,保留纵横骨架。得出了较长船楼端部侧壁板切割分离可大大减小船楼上层建筑参与船体总纵弯曲的程度,以及船楼端部开口后船楼上层建筑长度可取为开口内侧之间的长度等有价值的结论。  相似文献   

10.
舱段是潜艇的主要组成部分,为了降低潜艇结构的振动,在设计舱段时,需要选择合适的结构参数。舱段的基本结构是外壳板、纵骨和肋骨,选择外壳板的板厚、纵骨和肋骨的截面尺寸、纵骨和肋骨的数量作为设计参数,分别计算参数不同时舱段结构振动均方法向速度,根据计算结果,总结振动响应的谱峰频率、峰值与激振力频率、作用方向、舱段结构设计参数之间的关系,以此为基础,合理地设计舱段结构的参数和形式,达到了降低舱段结构振动水平的目的。  相似文献   

11.
舰船建造中焊接结构强度对船体结构强度分析有着十分重要的意义.对两种不同对接焊缝布置下的船体结构进行疲劳强度和极限承载能力分析.利用国际焊接学会推荐的焊接结构三维块体单元建模.运用Nastran软件计算拉伸和弯曲两种主要受载形式下的结构应力分布,参考有关规范中的S-N曲线对焊接结构进行热点应力疲劳分析比较.同时运用非线性计算软件ABAQUS分析结构在轴向拉伸和弯曲载荷作用下的极限承载能力.分析表明,舰船总段合拢中采用纵骨与板同一截面的对接形式,其结构性能与传统的纵骨与板交错布置的对接形式相当.  相似文献   

12.
舱段是潜艇的主要组成部分,为了降低潜艇结构的振动,在设计舱段时,需要选择合适的结构参数.舱段的基本结构是外壳板、纵骨和肋骨,选择外壳板的板厚、纵骨和肋骨的截面尺寸、纵骨和肋骨的数量作为设计参数,分别计算参数不同时舱段结构振动均方法向速度,根据计算结果,总结振动响应的谱峰频率、峰值与激振力频率、作用方向、舱段结构设计参数之间的关系,以此为基础,合理地设计舱段结构的参数和形式,达到了降低舱段结构振动水平的目的.  相似文献   

13.
为探究船-冰碰撞载荷下横骨架式和纵骨架式2种船体结构的耐撞性能,利用MSC/PATRAN软件建立油船及冰体有限元模型,运用非线性有限元软件Dytran对船中舷侧结构与冰体棱角发生碰撞进行仿真。通过2种舷侧结构的船体与冰体碰撞,对比不同船体结构的损伤变形、碰撞力和能量吸收的差异,探究各种船体结构的优劣性。利用不同船体结构的优劣性能对现有的2种船体舷侧结构进行改进,合理布置横骨材、纵骨材的数量及尺度,在船舶总质量改变不大的前提下,采用优化混合骨架设计结构方法提高舷侧结构的耐撞性能。计算结果表明,该方案对冰区船舶结构加强具有重要的参考意义,可为提高冰区船舶耐撞性设计提供建议。  相似文献   

14.
为了验证散货船、油船协调共同规范(HCSR)中在计算纵骨疲劳寿命时不考虑板架弯曲纵骨二次应力的合理性,讨论两种二次应力的计算方法,分别对散货船和油船板架的纵骨的二次应力进行计算,通过对是否考虑纵骨二次应力计算得到的疲劳寿命进行对比,验证HCSR中简化算法计算纵骨疲劳寿命的合理性。  相似文献   

15.
利用VISUAL LISP集成开发环境,通过AUTOLISP语言,开发出在绘制船体结构剖面的时候有效的辅助工具。可以根据肋骨型线图,自动铺开剖面、自动绘制纵骨并加纵骨号标注。利用该工具可以有效地提高剖面绘制效率,并能在设计初期对纵骨布置方案做出有效评估。  相似文献   

16.
为了研究矩形扶强材和削斜扶强材结构形式的某铝合金船体纵骨贯穿舱壁结构疲劳性能,对此进行了试验研究。首先建立舱段结构的有限元模型(该目标船纵骨采用6082铝合金,其他部分采用5083铝合金材料),确定载荷工况并计算分析两种扶强材结构在相应载荷水平下的应力分布状态。在此基础上,设计并开展了实际板厚四点弯曲疲劳模型试验,获得了试验模型在不同载荷水平下的疲劳失效循环次数,并且根据试验测得数据得到了两种扶强结构形式的S-N曲线。试验结果表明矩形扶强材形式的纵骨贯穿舱壁结构疲劳性能优于削斜扶强材形式,该结论可为舰船上纵骨贯穿舱壁结构处节点形式的设计以及5083与6082铝合金焊接结构形式(T型焊接和趾端焊接)的疲劳强度评估提供依据。  相似文献   

17.
张超  商德江  李琪 《船舶力学》2018,22(1):97-107
采用模态叠加法建立了水下纵肋加强圆柱壳振动与声辐射计算模型,其中纵肋的建模采用了Timoshenko梁理论,且考虑了纵肋的径向弯曲、周向弯曲、轴向纵振动和扭转振动。与仅考虑纵肋径向弯曲振动的传统建模方法相比,文中计算结果与有限元解吻合更好。分析了光壳和纵肋加强圆柱壳的振动模态、壳面均方振速和辐射声功率,给出了纵肋对圆柱壳低频振动与声辐射的影响规律。结果表明,加入纵肋后圆柱壳产生了新的振动模态;在低频段某些频率附近,壳体振动有所增强,但高频振动被明显降低;加入纵肋后,圆柱壳在低频段辐射声功率会出现许多新的峰值,峰的数量随纵肋数目增加而逐渐减少,在更高频段上加入纵肋后辐射声功率明显降低。  相似文献   

18.
针对超大型集装箱船结构布置进行多方案设计对比分析.以某万箱船为例,对比了8种不同结构布置方案,确定了货舱区结构设计、横舱壁支撑系统、设计静水弯矩、纵骨型材选择以及货舱内装载高箱对结构性能的影响.该研究对超大型集装箱船结构优化设计有一定的参考意义.  相似文献   

19.
为了提高基于CATIA V6平台的船体结构三维设计效率,在三维轻量化模型建模的基础上结合CATIA平台创建骨材的原生功能及二维外板展开图中的骨材参数化信息,提出一种外板骨材自动布置方法,基于平台提供的二次开发工具CAA实现交互式程序的开发,结合实船三维设计项目,验证该方法可以实现常见纵骨架式船体外板骨材的批量化自动布置,与创建骨材原生功能相比,该方法在效率上有着显著的提升,可缩短设计周期,节约设计成本。  相似文献   

20.
浮式生产储油船纵骨疲劳工程分析   总被引:1,自引:0,他引:1  
在船舶设计过程中需进行结构疲劳的工程计算并作为新船设计的常规校核项目。本文简要介绍了艘15万吨级浮式生产储油船(FPSO)纵骨疲劳校核和结果,阐述了FPSO波浪载荷预报及纵骨校核的一船过程和特点,以及挪威船级社NAUTICUS软件的疲劳计算方法,对于一船油船和散货船的疲劳计算也有较大的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号