首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In past years, the application of magnetorheological (MR) and electrorheological dampers in vehicle suspension has been widely studied, mainly for the purpose of vibration control. This paper presents theoretical study to identify an appropriate semi-active control method for MR-tracked vehicle suspension. Three representative control algorithms are simulated including the skyhook, hybrid and fuzzy-hybrid controllers. A seven degrees-of-freedom tracked vehicle suspension model incorporating MR dampers has been adopted for comparison between the performance of the three controllers. The model differential equations are derived based on Newton's second law of motion and the proposed control methods are developed. The performance of each control method under bump and sinusoidal road profiles for different vehicle speeds is simulated and compared with the performance of the conventional suspension system in time and frequency domains. The results show that the performance of tracked vehicle suspension with MR dampers is substantially improved. Moreover, the fuzzy-hybrid controller offers an excellent integrated performance in reducing the body accelerations as well as wheel bounce responses compared with the classical skyhook and hybrid controllers.  相似文献   

2.
In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.  相似文献   

3.
In this study, preview control algorithms for the active and semi-active suspension systems of a full tracked vehicle (FTV) are designed based on a 3-D.O.F model and evaluated. The main issue of this study is to make the ride comfort characteristics of a fast moving tracked vehicle better to keep an operator’s driving capability. Since road wheels almost trace the profiles of the road surface as long as the track doesn’t depart from the ground, the preview information can be obtained by measuring only the absolute position or velocity of the first road wheel. Simulation results show that the performance of the sky-hook suspension system almost follows that of full state feedback suspension system and the on-off semi-active system carries out remarkable performance with the combination of 12 on-off semi-active suspension units. The results simulated with 1st and 2nd weighting sets mean that the suspension system combined with the soft type of inner suspension and hard type of outer suspension can carry out better ride comfort characteristics than that with identical suspensions. The full tracked vehicle (FTV) system is uncontrollable and the system is split into controllable and uncontrollable subspace using singular value decomposition transformation. Frequency response curves to four types of inputs, such as heaving, pitching, rolling, and warping inputs, also demonstrate the merits of preview control in ride comfort. All the frequency characteristic responses confirm the continuous time results.  相似文献   

4.
目前最常用的电动轮--轮毂电机驱动型电动轮是在电动轮内安装轮毂电机,这将增加电动车的簧下质量,从而降低悬架响应的敏感度;汽车重心发生改变,汽车转向定位参数、制动滑移率的控制参数等都会发生改变,对车辆的平顺性和乘坐舒适性带来不利的影响。针对这些问题,文章设计出驱动-转向一体化的电动轮,将轮毂电机、轮内悬架、转向电机、电机悬挂装置和轮毂集成在车轮上,有效提高电动轮汽车的性能。  相似文献   

5.
汽车主动悬架的单神经元自适应控制   总被引:2,自引:0,他引:2  
金耀  于德介  宋晓琳 《汽车工程》2006,28(10):933-936
在1/4汽车动力学模型的基础上,设计了汽车主动悬架的自适应神经元控制器。以车辆的行驶平顺性为主要控制目标,车身垂直加速度、悬架动挠度、车轮动位移为具体评价参数,研究了系统在随机路面激励条件下的时域响应,计算了振动响应的均方根值,考察了在变参数条件下控制器的鲁棒性。仿真结果表明,该控制器能有效改善车辆的综合性能,尤其是平顺性和舒适性,并且具有较好的鲁棒性,对模型参数的变化有一定的适应性。  相似文献   

6.
A collocation-type control variable optimisation method is used in the paper to analyse to which extent the fully active suspension (FAS) can improve the vehicle ride comfort while preserving the wheel holding ability. The method is first applied for a cosine-shaped bump road disturbance of different heights, and for both quarter-car and full 10 degree-of-freedom vehicle models. A nonlinear anti-wheel hop constraint is considered, and the influence of bump preview time period is analysed. The analysis is then extended to the case of square- or cosine-shaped pothole with different lengths, and the quarter-car model. In this case, the cost function is extended with FAS energy consumption and wheel damage resilience costs. The FAS action is found to be such to provide a wheel hop over the pothole, in order to avoid or minimise the damage at the pothole trailing edge. In the case of long pothole, when the FAS cannot provide the wheel hop, the wheel is travelling over the pothole bottom and then hops over the pothole trailing edge. The numerical optimisation results are accompanied by a simplified algebraic analysis.  相似文献   

7.
The longitudinal connection between a chassis and a wheel in a conventional vehicle suspension system is commonly very stiff than the vertical connection. Such a mechanism can efficiently isolate vibrations and absorb shocks in the vertical direction but cannot sufficiently attenuate the impact in the longitudinal direction. In order to overcome such a limitation, a planar suspension system (PSS) with spring–damper struts in both the longitudinal and vertical directions is proposed so that the vibration along any direction in the wheel rotation plane can be isolated. In this paper, the dynamic responses of a vehicle with PSS due to a single bump and random road unevenness are investigated. The ride quality of the vehicle with PSS is evaluated in accordance with ISO 2631. A comparison with that of a similar conventional vehicle is conducted to demonstrate the promising potentials of the PSS in improving the vehicle ride quality.  相似文献   

8.
A systematic methodology is applied in an effort to select optimum values for the suspension damping and stiffness parameters of two degrees of freedom quarter-car models, subjected to road excitation. First, models involving passive suspension dampers with constant or dual rate characteristics are considered. In addition, models with semi-active suspensions are also examined. Moreover, special emphasis is put in modeling possible temporary separations of the wheel from the ground. For all these models, appropriate methodologies are employed for capturing the motions of the vehicle resulting from passing with a constant horizontal speed over roads involving an isolated or a distributed geometric irregularity. The optimization process is based on three suitable performance criteria, related to ride comfort, suspension travel and road holding of the vehicle and yielding the most important suspension stiffness and damping parameters. As these criteria are conflicting, a suitable multi-objective optimization methodology is set up and applied. As a result, a series of diagrams with typical numerical results are presented and compared in both the corresponding objective spaces (in the form of classical Pareto fronts) and parameter spaces.  相似文献   

9.
A systematic methodology is applied in an effort to select optimum values for the suspension damping and stiffness parameters of two degrees of freedom quarter-car models, subjected to road excitation. First, models involving passive suspension dampers with constant or dual rate characteristics are considered. In addition, models with semi-active suspensions are also examined. Moreover, special emphasis is put in modeling possible temporary separations of the wheel from the ground. For all these models, appropriate methodologies are employed for capturing the motions of the vehicle resulting from passing with a constant horizontal speed over roads involving an isolated or a distributed geometric irregularity. The optimization process is based on three suitable performance criteria, related to ride comfort, suspension travel and road holding of the vehicle and yielding the most important suspension stiffness and damping parameters. As these criteria are conflicting, a suitable multi-objective optimization methodology is set up and applied. As a result, a series of diagrams with typical numerical results are presented and compared in both the corresponding objective spaces (in the form of classical Pareto fronts) and parameter spaces.  相似文献   

10.
The main role of the suspension system is to achieve ride comfort by reducing vibrations generated by the road roughness. The active damper is getting much attention due to its reduced cost and ability to enhance ride comfort especially when the road ahead is measurable by an environment sensor. In this study a preview active suspension control system was developed in order to improve ride comfort when the vehicle is passing over a speed bump. The control system consists of a feedback controller based on the skyhook logic and a feedforward controller for canceling out the road disturbance. The performance limit for the active suspension control system was computed via trajectory optimization to provide a measure against which to compare and validate the performance of the developed controller. The simulation results indicated that the controller of this study could enhance ride comfort significantly over the active suspension control system employing only the skyhook feedback control logic. Also the developed controller, by displaying similar control pattern as the trajectory optimization during significant time portions, proved that its control policy is legitimate.  相似文献   

11.
This research investigates stochastic estimation of a look-ahead sensor scheme using the optimal preview control for an active suspension system of a full tracked vehicle (FTV). In this scheme, wheel disturbance input to the front wheels are estimated using the dynamic equations of the system. The estimated road disturbance input at the front wheels are utilized as preview information for the control of subsequently following wheels of FTV. The design of optimal preview control is used as a classical linear quadratic Gaussian problem by combining dynamics of the original system and estimation of previewed road inputs. The effectiveness of the preview controller is evaluated by comparing the estimated information with the measured information for different road profiles, where Kalman filter is used for the state-variables estimation of the FTV. This research also considers the reduced order estimation using commonly available sensors in order to decrease the number of sensors and measurements. The simulation results’ using an active suspension system with different preview information shows that the proposed system can be beneficial for the improvement of ride comfort of tracked vehicles without using any specialized sensors for preview information calculation.  相似文献   

12.
针对变刚度半主动悬架这种时变的、非线性复杂系统,提出将神经网络自适应控制策略用于该悬架的控制,研究中主要用车身垂直加速度作为主要控制目标,以提高车辆行驶的平顺性,同时在仿真控制研究中兼顾悬架动挠度和车轮动载荷的变化,以提高车辆行驶安全性和操纵稳定性,通过仿真计算和结果分析验证了其可行性和有效性。  相似文献   

13.
针对轮毂电机驱动电动汽车3种构型,对其平顺性问题展开研究。分别采用滤波白噪声方法和三角形凸块描述随机路面激励和脉冲路面激励。建立了轮毂电机驱动电动汽车3种构型的振动模型,确定了相应的平顺性评价指标。在随机路面和脉冲路面下,采用Matlab/Simulink仿真了轮毂电机驱动电动汽车3种构型的平顺性。研究结果表明,具有吸振结构的构型2和具有悬置结构的构型3与传统悬架的构型1相比,降低了轮毂电机驱动电动汽车随机路面和脉冲路面的平顺性评价指标。  相似文献   

14.
This paper proposes an improved virtual reference model for semi-active suspension to coordinate the vehicle ride comfort and handling stability. The reference model combines the virtues of sky-hook with ground-hook control logic, and the hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high-speed condition. Suspension state observer based on unscented Kalman filter is designed. A sliding mode controller (SMC) is developed to track the states of the reference model. The stability of the SMC strategy is proven by means of Lyapunov function taking into account the nonlinear damper characteristics and sprung mass variation of the vehicle. Finally, the performance of the controller is demonstrated under three typical working conditions: the random road excitation, speed bump road and sharp acceleration and braking. The simulation results indicated that, compared with the traditional passive suspension, the proposed control algorithm can offer a better coordination between vehicle ride comfort and handling stability. This approach provides a viable alternative to costlier active suspension control systems for commercial vehicles.  相似文献   

15.
This paper presents vibration control of a tracked vehicle installed with electro-rheological suspension units (ERSU). As a first step, an in-arm type ERSU is designed, and its spring and damping characteristics are evaluated with respect to the intensity of electric fields. Subsequently, a 16 degree-of-freedom model for a tracked vehicle equipped with the proposed ERSU is established followed by the formulation of a neuro-fuzzy controller. This controller takes account for both ride quality and steering stability by adopting a weighting parameter between two performance requirements. The parameter is appropriately determined by employing a fuzzy algorithm associated with two fuzzy variables: the vertical speed of the body and the rotational angular speed of the wheel. Control performances to isolate unwanted vibration from bump and random road excitations are evaluated through computer simulations. In addition, maximum speed of the vehicle with 6 Watt power absorption is investigated with respect to the road roughness.  相似文献   

16.
This paper presents vibration control of a tracked vehicle installed with electro-rheological suspension units (ERSU). As a first step, an in-arm type ERSU is designed, and its spring and damping characteristics are evaluated with respect to the intensity of electric fields. Subsequently, a 16 degree-of-freedom model for a tracked vehicle equipped with the proposed ERSU is established followed by the formulation of a neuro-fuzzy controller. This controller takes account for both ride quality and steering stability by adopting a weighting parameter between two performance requirements. The parameter is appropriately determined by employing a fuzzy algorithm associated with two fuzzy variables: the vertical speed of the body and the rotational angular speed of the wheel. Control performances to isolate unwanted vibration from bump and random road excitations are evaluated through computer simulations. In addition, maximum speed of the vehicle with 6 Watt power absorption is investigated with respect to the road roughness.  相似文献   

17.
基于柔性模型的多轴汽车平顺性的仿真研究   总被引:2,自引:0,他引:2  
基于弹性梁弯曲振动理论和模态分析法建立了多轴汽车平顺性分析的柔性模型。按照汽车行驶平顺性评价方法,运用建立的柔性模型,分析了车速、路面等级、悬挂质量的分布、车架刚度以及悬架系统的刚度和阻尼对多轴汽车平顺性的影响。分析结果表明:悬挂质量的弯曲振动是影响多轴汽车行驶平顺性的一个不可忽略的重要因素;常用的刚体模型不能准确地描述多轴汽车的平顺性,不适合用于多轴汽车平顺性的分析。  相似文献   

18.
A planar suspension system (PSS) is a novel automobile suspension system in which an individual spring–damper strut is implemented in both the vertical and longitudinal directions, respectively. The wheels in a vehicle with such a suspension system can move back and forth relative to the chassis. When a PSS vehicle experiences asymmetric road excitations, the relative longitudinal motion of wheels with respect to the chassis in two sides of the same axle are not identical, and thus the two wheels at one axle will not be aligned in the same axis. The total dynamic responses, including those of the bounce, pitch and the roll of the PSS vehicle, to the asymmetric road excitation may exhibit different characteristics from those of a conventional vehicle. This paper presents an investigation into the comprehensive dynamic behaviour of a vehicle with the PSS, in such a road condition, on both the straight and curved roads. The study was carried out using an 18 DOF full-car model incorporating a radial-spring tyre–ground contact model and a 2D tyre–ground dynamic friction model. Results demonstrate that the total dynamic behaviour of a PSS vehicle is generally comparable with that of the conventional vehicle, while PSS exhibits significant improvement in absorbing the impact forces along the longitudinal direction when compared to the conventional suspension system. The PSS vehicle is found to be more stable than the conventional vehicle in terms of the directional performance against the disturbance of the road potholes on a straight line manoeuvre, while exhibiting a very similar handling performance on a curved line.  相似文献   

19.
Active suspension is commonly considered under the framework of vertical vehicle dynamics control aimed at improvements in ride comfort. This paper uses a collocation-type control variable optimisation tool to investigate to which extent the fully active suspension (FAS) application can be broaden to the task of vehicle handling/cornering control. The optimisation approach is firstly applied to solely FAS actuator configurations and three types of double lane-change manoeuvres. The obtained optimisation results are used to gain insights into different control mechanisms that are used by FAS to improve the handling performance in terms of path following error reduction. For the same manoeuvres the FAS performance is compared with the performance of different active steering and active differential actuators. The optimisation study is finally extended to combined FAS and active front- and/or rear-steering configurations to investigate if they can use their complementary control authorities (over the vertical and lateral vehicle dynamics, respectively) to further improve the handling performance.  相似文献   

20.
Pareto optimisation of bogie suspension components is considered for a 50 degrees of freedom railway vehicle model to reduce wheel/rail contact wear and improve passenger ride comfort. Several operational scenarios including tracks with different curve radii ranging from very small radii up to straight tracks are considered for the analysis. In each case, the maximum admissible speed is applied to the vehicle. Design parameters are categorised into two levels and the wear/comfort Pareto optimisation is accordingly accomplished in a multistep manner to improve the computational efficiency. The genetic algorithm (GA) is employed to perform the multi-objective optimisation. Two suspension system configurations are considered, a symmetric and an asymmetric in which the primary or secondary suspension elements on the right- and left-hand sides of the vehicle are not the same. It is shown that the vehicle performance on curves can be significantly improved using the asymmetric suspension configuration. The Pareto-optimised values of the design parameters achieved here guarantee wear reduction and comfort improvement for railway vehicles and can also be utilised in developing the reference vehicle models for design of bogie active suspension systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号