首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In controlling the longitudinal motion of electrified vehicles such as hybrid vehicles and PHEV (Plug-in Hybrid Electric Vehicles), the variation of the driving resistance loads (or driving loads) such as road grade and actual vehicle mass, is the most influential factor which limits the control performance. Measuring the driving load is not impossible, but it is costly since additional sensors have to be mounted on the vehicle. In this study, methods for estimating vehicle mass and road grade are designed to compensate for the driving loads. The proposed methods are verified using simulation tools and then evaluated experimentally.  相似文献   

2.
In this paper, considering the dynamical model of tyre–road contacts, we design a nonlinear observer for the on-line estimation of tyre–road friction force using the average lumped LuGre model without any simplification. The design is the extension of a previously offered observer to allow a muchmore realistic estimation by considering the effect of the rolling resistance and a term related to the relative velocity in the observer. Our aim is not to introduce a new friction model, but to present a more accurate nonlinear observer for the assumed model. We derive linear matrix equality conditions to obtain an observer gain with minimum pole mismatch for the desired observer error dynamic system. We prove the convergence of the observer for the non-simplified model. Finally, we compare the performance of the proposed observer with that of the previously mentioned nonlinear observer, which shows significant improvement in the accuracy of estimation.  相似文献   

3.
The influence of the tyre–road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre–road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre–road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.  相似文献   

4.
Friction within the wheel–rail contact highly influences all aspects of vehicle–track interaction. Models describing this frictional behaviour are of high relevance, for example, for reliable predictions on drive train dynamics. It has been shown by experiments, that the friction at a certain position on rail is not describable by only one number for the coefficient of friction. Beside the contact conditions (existence of liquids, solid third bodies, etc.) the vehicle speed, normal loading and contact geometry are further influencing factors. State-of-the-art models are not able to account for this sufficiently. Thus, an Extended-Creep-Force-Model was developed taking into account effects from third body layers. This model is able to describe all considered effects. In this way, a significant improvement of the prediction quality with respect to all aspects of vehicle–track interaction is expected.  相似文献   

5.
In certification of new rail vehicles with respect to running characteristics, a wide variety of operating conditions needs to be considered. However, in associated test runs the wheel–rail friction condition is difficult to handle because the friction coefficient needs to be fairly high and the friction is also generally hard to assess. This is an issue that has been studied in the European project DynoTRAIN and part of the results is presented in this paper. More specifically, an algorithm for estimating the wheel–rail friction coefficient at vehicle certification tests is proposed. Owing to lack of some measurement results, the algorithm here is evaluated in a simulation environment which is also an important step towards practical implementation. A quality measure of the friction estimate is suggested in terms of estimated wheel–rail spin and total creep. It is concluded that, tentatively, the total creep should exceed 0.006 and the spin should be less than 1.0 m?1 for the algorithm to give a good friction estimate. Sensitivity analysis is carried out to imitate measurement errors, but should be expanded in further work.  相似文献   

6.
A key factor to understand the vehicle dynamic behaviour is to know as accurately as possible the interaction that occurs between the tyre and the road, since it depends on many factors that influence the dynamic response of the vehicle. This paper aims to develop a methodology in order to characterise the tyre–road behaviour, applying it to obtain the tyre–road grip coefficient. This methodology is based on the use of dynamic simulation of a virtual model, integrated into a genetic algorithm that identifies the tyre–road friction coefficient in order to adjust the response obtained by simulation to real data. The numerical model was developed in collaboration with SEAT Technical Centre and it was implemented in multibody dynamic simulation software Adams®, from MSC®.  相似文献   

7.
Improving braking skills of a rider supported by a real-time training device embedded in the motorcycle represents a possible strategy to deal with safety issues associated with the use of powered two wheelers. A challenging aspect of the braking trainer system is the evaluation of the adherence between tyre and road surface on each wheel. This paper presents a possible method to evaluate the current and maximum adherence during a braking manoeuvre. The proposed approach was positively validated through multi-body simulations and experimental data acquired in naturalistic riding conditions.  相似文献   

8.
This paper qualitatively and quantitatively reviews and compares three typical tyre–road friction coefficient estimation methods, which are the slip slope method, individual tyre force estimation method and extended Kalman filter method, and then presents a new cost-effective tyre–road friction coefficient estimation method. Based on the qualitative analysis and the numerical comparisons, it is found that all of the three typical methods can successfully estimate the tyre force and friction coefficient in most of the test conditions, but the estimation performance is compromised for some of the methods during different simulation scenarios. In addition, all of these three methods need global positioning system (GPS) to measure the absolute velocity of a vehicle. To overcome the above-mentioned problem, a novel cost-effective estimation method is proposed in this paper. This method requires only the inputs of wheel angular velocity, traction/brake torque and longitudinal acceleration, which are all easy to be measured using available sensors installed in passenger vehicles. By using this method, the vehicle absolute velocity and slip ratio can be estimated by an improved nonlinear observer without using GPS, and the friction force and tyre–road friction coefficient can be obtained from the estimated vehicle velocity and slip ratio. Simulations are used to validate the effectiveness of the proposed estimation method.  相似文献   

9.
A stochastic mathematical model is developed to evaluate the dynamic behaviours and statistical responses of vehicle–track systems when random system excitations including crosswinds and track irregularities are imposed. In this model, the railway vehicle is regarded as a multi-rigid-body system, the track system is modelled by finite element theory. These two systems are spatially coupled by the nonlinear wheel–rail contact forces and unsteady aerodynamic forces. The high efficiency and accuracy of this stochastic model are validated by comparing to the robust Monte-Carlo method. Numerical studies show that crosswinds have a great influence on the dynamic performance of vehicle–track systems, especially on transverse vibrations. When the railway vehicle initially runs into the wind field, it will experience a severe vibration stage, and then stepping into a relatively steady state where the fluctuating winds and track irregularities will play deterministic roles in the deviations of system responses. Moreover, it is found that track irregularities should be properly considered in the safety assessment of the vehicle even in strong crosswinds.  相似文献   

10.
Excitation force spectra are necessary for a realistic prediction of railway-induced ground vibration. The excitation forces cause the ground vibration and they are themselves a result of irregularities passed by the train. The methods of the related analyses – the wavenumber integration for the wave propagation in homogeneous or layered soils, the combined finite-element boundary-element method for the vehicle–track–soil interaction – have already been presented and are the base for the advanced topic of this contribution. This contribution determines excitation force spectra of railway traffic by two completely different methods. The forward analysis starts with vehicle, track and soil irregularities, which are taken from literature and axle-box measurements, calculates the vehicle–track interaction and gets theoretical force spectra as the result. The second method is a backward analysis from the measured ground vibration of railway traffic. A calculated or measured transfer function of the soil is used to determine the excitation force spectrum of the train. A number of measurements of different soils and different trains with different speeds are analysed in that way. Forward and backward analysis yield the same approximate force spectra with values around 1 kN for each axle and third of octave.  相似文献   

11.
The real-time simulation of vehicle trains requires an accurate and numerically feasible representation of the vehicle–trailer coupling. Although the equations of motion for the chassis instances can be reduced to systems of ordinary differential equations, additional constraints on the relative motion of vehicle and trailer are introduced when considering the hitch. In this article, we present a strategy for the simulation of vehicle–trailer combinations, where the algebraic constraints of the coupling are treated explicitly. Although this approach allows exact modeling of the respective joint geometry and realistic calculation of the coupling forces, a suitable numerical algorithm is required in order to solve the resulting differential-algebraic system of index 3 in real-time. The implementation in a commercial vehicle dynamics program is discussed and real-time simulation results are shown, which prove its feasibility for different coupling joints and demanding driving maneuvers.  相似文献   

12.
13.
Knowledge of the current tyre–road friction coefficient is essential for future autonomous vehicles. The environmental conditions, and the tyre–road friction in particular, determine both the braking distance and the maximum cornering velocity and thus set the boundaries for the vehicle. Tyre–road friction is difficult to estimate during normal driving due to low levels of tyre force excitation. This problem can be solved by using active tyre force excitation. A torque is added to one or several wheels in the purpose of estimating the tyre–road friction coefficient. Active tyre force excitation provides the opportunity to design the tyre force excitation freely. This study investigates how the tyre force should be applied to minimise the error of the tyre–road friction estimate. The performance of different excitation strategies was found to be dependent on both tyre model choice and noise level. Furthermore, the advantage with using tyre models with more parameters decreased when noise was added to the force and slip ratio.  相似文献   

14.
The main objective of this work is to determine the limit of safe driving conditions by identifying the maximal friction coefficient in a real vehicle. The study will focus on finding a method to determine this limit before reaching the skid, which is valuable information in the context of traffic safety. Since it is not possible to measure the friction coefficient directly, it will be estimated using the appropriate tools in order to get the most accurate information. A real vehicle is instrumented to collect information of general kinematics and steering tie-rod forces. A real-time algorithm is developed to estimate forces and aligning torque in the tyres using an extended Kalman filter and neural networks techniques. The methodology is based on determining the aligning torque; this variable allows evaluation of the behaviour of the tyre. It transmits interesting information from the tyre–road contact and can be used to predict the maximal tyre grip and safety margin. The maximal grip coefficient is estimated according to a knowledge base, extracted from computer simulation of a high detailed three-dimensional model, using Adams® software. The proposed methodology is validated and applied to real driving conditions, in which maximal grip and safety margin are properly estimated.  相似文献   

15.
The vehicle–track coupled system has a random nature in the time–space domain. This paper proposes a computational model to analyse the temporal–spatial stochastic vibrations of vehicle–track systems, where the vehicle–track system is divided into a vehicle subsystem, track subsystem, and interfacial subsystem between the wheel and rail. In this model, the time-varying randomicity of dynamical parameters of the vehicle system, correlation, and randomness of the track structural parameters in the time–space joint dimensions, and randomness of the track random irregularities are considered. A probability dimension-reduction method was used to randomly combine different random variables. Furthermore, the probability density evolution method was applied to solve the delivery problem of probabilities between excitation inputs and response outputs. The temporal–spatial stochastic vibrations of the vehicle–track system with different coefficients of variation were studied, in which we assumed that the dynamic parameters obeyed the normal distribution, and the stochastic simulation method of the track random irregularities is probed into. The calculated results from this model are consistent with the actual measured results and physical conceptions. Thus, the temporal–spatial stochastic evolutionary mechanism can be explored, and the limits of dynamic indices can be formulated by using this developed model.  相似文献   

16.
A new method is proposed for the solution of the vertical vehicle–track interaction including a separation between wheel and rail. The vehicle is modelled as a multi-body system using rigid bodies, and the track is treated as a three-layer beam model in which the rail is considered as an Euler-Bernoulli beam and both the sleepers and the ballast are represented by lumped masses. A linear complementarity formulation is directly established using a combination of the wheel–rail normal contact condition and the generalised-α method. This linear complementarity problem is solved using the Lemke algorithm, and the wheel–rail contact force can be obtained. Then the dynamic responses of the vehicle and the track are solved without iteration based on the generalised-α method. The same equations of motion for the vehicle and track are adopted at the different wheel–rail contact situations. This method can remove some restrictions, that is, time-dependent mass, damping and stiffness matrices of the coupled system, multiple equations of motion for the different contact situations and the effect of the contact stiffness. Numerical results demonstrate that the proposed method is effective for simulating the vehicle–track interaction including a separation between wheel and rail.  相似文献   

17.
Owing to significantly individual differences in everyday driving behavior, it is quite difficult to assess the relative importance of driver errors compared with vehicle faults or road environment anomalies. This paper briefly presents several basic concepts for analysis of driving dependability including driving errors, driving reliability, driver recovery from erroneous actions, and key factors that shape driving behavior. This presentation is followed by construction of a shaping architecture for driving behavior that consists of a perception stage, a decision-making stage, an execution stage and correlativity among stages, in addition to internal feedback from complex traffic states. The causation classification of driving errors is then discussed in the context of three elemental types: perception error, decision-making error and execution error. The emphasis of this paper is on how to quantify driving dependability in order to identify various erroneous driver actions during traffic accidents. Specifically, this paper proposes a methodology to measure the probability of driving errors by considering the driver recovery from erroneous actions. The purpose of model-based driving dependability analysis is to quantitatively and qualitatively analyze the relationship between driving errors and traffic accidents causations.  相似文献   

18.
A model for simulation of dynamic interaction between a railway vehicle and a turnout (switch and crossing, S&C) is validated versus field measurements. In particular, the implementation and accuracy of viscously damped track models with different complexities are assessed. The validation data come from full-scale field measurements of dynamic track stiffness and wheel–rail contact forces in a demonstrator turnout that was installed as part of the INNOTRACK project with funding from the European Union Sixth Framework Programme. Vertical track stiffness at nominal wheel loads, in the frequency range up to 20?Hz, was measured using a rolling stiffness measurement vehicle (RSMV). Vertical and lateral wheel–rail contact forces were measured by an instrumented wheel set mounted in a freight car featuring Y25 bogies. The measurements were performed for traffic in both the through and diverging routes, and in the facing and trailing moves. The full set of test runs was repeated with different types of rail pad to investigate the influence of rail pad stiffness on track stiffness and contact forces. It is concluded that impact loads on the crossing can be reduced by using more resilient rail pads. To allow for vehicle dynamics simulations at low computational cost, the track models are discretised space-variant mass–spring–damper models that are moving with each wheel set of the vehicle model. Acceptable agreement between simulated and measured vertical contact forces at the crossing can be obtained when the standard GENSYS track model is extended with one ballast/subgrade mass under each rail. This model can be tuned to capture the large phase delay in dynamic track stiffness at low frequencies, as measured by the RSMV, while remaining sufficiently resilient at higher frequencies.  相似文献   

19.
An approximate analytical method is proposed for calculating the contact patch and pressure distribution in the wheel–rail interface. The deformation of the surfaces in contact is approximated using the separation between them. This makes it possible to estimate the contact patch analytically. The contact pressure distribution in the rolling direction is assumed to be elliptic with its maximum calculated by applying Hertz' solution locally. The results are identical to Hertz's for elliptic cases. In non-elliptic cases good agreement is achieved in comparison to the more accurate but computationally expensive Kalker's variational method (CONTACT code). Compared to simplified non-elliptic contact methods based on virtual penetration, the calculated contact patch and pressure distribution are markedly improved. The computational cost of the proposed method is significantly lower than the more detailed methods, making it worthwhile to be applied to rolling contact in rail vehicle dynamics simulation. Such fast and accurate estimation of contact patch and pressure paves the way for on-line modelling of damage phenomena in dynamics simulation packages.  相似文献   

20.
This paper presents a lateral driver model for vehicle–driver closed-loop simulation at the limits of handling. An appropriate driver model can be used to evaluate the performance of vehicle chassis control systems via computer simulations before vehicle tests which incurs expenses especially at the limits of handling. The driver model consists of two parts. The first part is an upper-level controller employing force-based approach to reduce the number of unknown vehicle parameters. The feedforward part of the upper controller has been designed by using the centre of percussion. The feedback part aims to minimise ‘tangential error’, defined as the sum of body slip angle and yaw error, to match vehicle direction and road heading angle. The part is designed to regenerate an appropriate skid motion similar to that of a professional driver at the limits. The second part is a lower-level controller which converts the desired front lateral force to steering wheel angle. The lower-level controller also consists of feedforward and feedback parts. A two-degree-of-freedom bicycle model-based feedforward part provides nominal steering wheel angle, and the feedback part aims to eliminate unmodelled error. The performance of the lateral driver model has been investigated via computer simulations. It has been shown that the steering behaviours of the proposed driver model are quite close to those of a professional driver at the limits. Compared with the previously developed lateral driver models, the proposed lateral driver model shows good tracking performance at the limits of handling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号